__ 3]
Appendix A: ARM Reference

Register Mnemonics for A32 Calling Convention

Name Register Purpose

al 0 argument, return value, or scratch
a2 1 argument, return value, or scratch
a3 2 argument, return value, or scratch
ad 3 argument, return value, or scratch
vi 4 local variable

v2 5 local variable

v3 6 local variable

véd 7 local variable

v5 8 local variable

sb 9 static base

sl 10 stack limit

fp 11 frame pointer

ip 12 intra-procedure-call scratch register
sp 13 stack pointer

1r 14 link register (i.e., return address)
pc 15 program counter

All registers can also be referred to generically using r0-r15. More information can be found at the Wikipedia
page on calling conventions or the ARM developer reference on predeclared register names.

https://en.wikipedia.org/wiki/Calling_convention#ARM_(A32)
https://en.wikipedia.org/wiki/Calling_convention#ARM_(A32)
https://developer.arm.com/documentation/dui0068/b/Assembler-Reference/Predefined-register-and-coprocessor-names/Predeclared-register-names

86

Status Flags

ARM instructions sometimes set status codes, in particular arithmetic instructions. Status codes are:
Name Meaning Purpose

negative Set when the result is negative.

z Zero Set when the result is zero.
c carry Set when the result of an unsigned operation overflows the 32-bit result register.
v overflow Same as the c flag, but for signed operations.

APPENDIX A: ARM REFERENCE 87

A32 Calling Convention

A32 tries to pass function arguments using registers, for speed. The first five local variables are also stored in
registers. Whenever there are more arguments or more local variables, allocation spills to the stack. The caller
is responsible for setting up stack allocation.

If the type of value returned is too large to fitin al to a4, or whose size cannot be determined statically at
compile time, then the caller must allocate space for that value at run time, and pass a pointer to that space in
al.

A32 is mostly callee save, meaning that the called subroutine (the “callee”) is responsible for preserving vi—
v5, sb, s1, fp, and sp (i.e., r4-r11 and r13). However, the function doing the call (the “caller”) is responsible
for saving the return address in 1r (i.e., r14) to the stack. In other words, any subroutine that intends to call
another subroutine must save the return address found in the link register to the stack before the call is made;
1r is caller saved.

AB32 is full-descending, meaning that:

e the “bottom” of the stack is allocated at a high address and grows toward lower addresses, and

e the stack pointer, sp, points to the location in which the last item was stored; push decrements sp and then
stores the value.

<4+— top of memory (highest possible address)

stack

[RSSSKIK KRS
<«— stack upper limit (s1, register 10) ’?/{;nused memory\:‘g’
SIS -
A stack upper limit
(s1, register 10)
unused
° top of frame
%’ m bytes local variables (sp, register 13)
2
'8 4 bytes saved frame pointer (fp) b fh
1] “bottom” of frame
o g 4 bytes saved return address (Ir) <—— (£p, register 11)
(=)
X n bytes spilled arguments
<— top of application image %5’
static data
<— static base (sb, register 9) top of memory /
code <4—— bottom of stack
<4—— bottom of memory (low address) (highest possible address)
Figure 8.1: Layout of a program’s memory. Figure 8.2: Layout of a program’s stack.

Figure 8.1 shows a loaded program’s virtual memory layout. Figure 8.2 shows a loaded program’s stack
layout. Note that Figure 8.2 is displayed upside-down for readability; stacks grow downward, toward lower
memory addresses.

Whenever there are too many arguments to fit in registers al-a4 (i.e., r0-r3), values are spilled (n bytes
= k spilled arguments x 4 bytes) and stored below the fp. Local variables and other temporary values are
stored above the saved frame pointer and return address. Instructions that access stack memory are usually
fp-relative.

It may be hard to appreciate by looking at the above diagrams, but a stack containing a sequence of stack
frames is a linked list, where the saved frame pointer points to the next (previous) frame.

88

Instruction Mnemonics

This manual was adapted from the ARM KEIL developer documentation page. Most modifications omit detail
that is not relevant to this class. However, formal syntax has been changed substantially to make the docu-
mentation easier to use and more consistent with gcc’s assembler output. An extensive set of examples have
also been added.

Since this manual glosses over some details for the sake of readability, it has some minor inaccuracies. It
also does not include every single instruction. For all the gory details, refer to ARM’s official Assembler User
Guide.

Typographical conventions.

The first thing to note about ARM assembly is that, when using gcc, the syntax is neither “Intel syntax”
nor “AT&T syntax.” You probably learned AT&T syntax in CSCI 237. Treat ARM assembly as if it were a new
programming language, and if you don’t understand something, ask about it or look it up. That said, assembly
is simple—some would even say simplistic—and ARM assembly is much simpler than x86 assembly. You'll
likely find that most of what you know translates to ARM with only minor changes in syntax.

The first element in any instruction is the name of the instruction; names are also sometimes referred to as
instruction mnemonics because the computer itself never sees the name. Mnemonics are translated into opcodes,
literally numbers, by the assembler.

Argument names are italicized. Refer to the definition below an instruction’s formal syntax for an explanation
of its use.

Optional syntax is underlined. Unusually, not only does ARM assembly have optional arguments, it also has
optional instruction suffixes. Many instruction names have optional suffixes. Putting a suffix on an instruction
name changes the meaning of the operation. For example, the add instruction can take a suffix, like the addscs
variant that only adds two numbers when the cs flag is set. We describe the condition code suffixes below. You
will never type an underline in your assembly; this is simply a typographical convention (i.e., abstract syntax)
to help you understand which parts of an instruction are optional.

Because ARM instructions can have many variants, it can be hard to tell where spaces should go. Therefore,
this guide always puts a visible space character ., in the formal syntax definition whenever you should put a

space. If there is no ., don't put a space there or the assembler won't understand you.

Any assembly starting with a period (.) is an assembler directive. Assembler directives supply data to the as-
sembler to control the assembly process. They are not ARM instructions, and the processor will never see them.

@is the start of a comment. Yes, assembly can have comments. Good assembly programmers actually use them!

{Curly braces} denote a list of values. Curly braces are not abstract syntax—you actually have to type them.

https://www.keil.com/
https://www.keil.com/support/man/docs/armasm/armasm_dom1361289850509.htm
https://www.keil.com/support/man/docs/armasm/armasm_dom1361289850509.htm

APPENDIX A: ARM REFERENCE 89

Comma characters (,) are used in instructions that take multiple mandatory arguments. Commas are not
abstract syntax—you actually have to type them.

The hash sign (#) denotes that the value succeeding it is an immediate value. Immediate values are constants. In
most ordinary programming languages, we call these values literal values. Hashes are not abstract syntax—you
actually have to type them.

Indirect address expressions are enclosed in [square brackets]. This syntax is used to load an address into a
register. Because all ARM instructions are 32 bits wide, and the opcode and target take some space, there is no
way to directly load a 32-bit address—there just isn't enough space in an instruction. Instead, ARM assembly
lets you use an indirect address expression that computes an offset from a known base. The format is [base,
offset]. For example, [fp, #-12] returns the value obtained by subtracting 12 from the address stored in the
fp register. Square brackets are not abstract syntax—you actually have to type them.

cond denotes a condition code suffix. The meaning of the instruction with a condition code depends on the op-
eration. Valid condition code suffixes are:

Code Meaning

eq equal

ne not equal

cs carry set (same as hs)

hs unsigned higher or same (same as cs)
cc carry clear (same as 1lo)

lo unsigned lower (same as cc)
mi minus or negative result

pl positive or zero result

Vs overflow

ve no overflow

hi unsigned higher

1s unsigned lower or same

ge signed greater than or equal
1t signed less than

gt signed greater than

le signed less than or equal

al always (this is the default)

90

add

Add without carry.
Syntax.

add s cond ., rdst, rnuml, , num2
or add cond ., rdst, . rnuml, . #immi2

where:
s
is an optional suffix. If s is appended, condition flags are updated on the result of the operation.
cond
is an optional condition code.
rdst
is the destination register.
rnuml
is the register holding the first operand.
num?2
is either a constant or a register with optional shift.
imm12
is any value in the range 0-4095.

The add instruction adds the values in rnum1 with num2 or imm12. In certain circumstances,
the assembler may substitute one instruction for another. Be aware of this when reading
disassembly listings.

Example.
add fp, sp, #4

adds 4 to the contents of the sp register and stores the result in the fp register.

APPENDIX A: ARM REFERENCE 91

b
Branch to an address.
Syntax.
b cond ., addr
where:
cond
is an optional condition code.

addr
is a PC-relative expression, like a label.

The b instruction causes a branch to addr. In other words, bl simply “jumps” to another
location in the code.

Example.
b .L14

branches to the instruction given by the assembly label .L14.

92

HEYE] o

Branch with link.
Syntax.
bl cond ., addr

where:
cond
is an optional condition code.
addr
is a PC-relative expression, like a label.

The bl instruction copies the address of the next instruction (pc+4) into 1r (r14, the link
register), and then branches to the given label. bl is typically used to call a function.

Example.
bl time

branches to the instruction given by the assembly label time and copies the address of the instruction ap-
pearing after the bl into the 1r register. In other words, the example calls the time function.

APPENDIX A: ARM REFERENCE 93

544

Branch and exchange instruction set.
Syntax.
bx cond , addr

where:
cond
is an optional condition code.
addr
is a PC-relative expression, like a label.

The bx instruction branches to the given addr. If the least significant bit of the given address
is 1, then switch into Thumb mode, otherwise stay in ARM mode. bx is typically used to return
from a function.

Example.

bx 1r

branches to the instruction stored in the 1r register. In other words, the example returns from the current
function.

94

cmp

Compares two values.
Syntax.
cmp cond ., rnuml, num2

where:
cond
is an optional condition code.
rnuml
is a register containing the first value.
num2
is either a constant or a register with optional shift.

cmp compares the value in a register with num?2. It updates the condition flags on the result,
but does not place the result in any register. The cmp instruction subtracts the value of num?2
from the value in rnuml. This is the same as a subs instruction, except that the result is
discarded. The n, z, ¢ and v flags are updated according to the result.

Example.
cmp r3, #0

compares the value in the register r3 with 0. If the two are equal,

eor

Bitwise exclusive or.
Syntax.

eor s cond rdst, | rnuml, | num?2
where:
s
is an optional suffix. If s is appended, condition flags are updated on
the result of the operation.
cond
is an optional condition code.
rdst
is the destination register.
rnuml
is the register holding the first operand.
num?2
is either a constant or a register with optional shift.
imm12
is any value in the range 0-4095.

The eor instruction performs a bitwise exclusive OR
operation on the values in rnum1 and num?2, storing it
in rdst.

Example.
b .L14

branches to the instruction given by the assembly label .L14.

APPENDIX A ARM REFERENCE

95

96

ldr

Copies a value into a register. Unlike mov, the 1dr instruction loads values indirectly. This instruction is useful
for loading values that must be 32 bits wide, like addresses. Values are loaded from a target address. To fit this
instruction into 32 bits, the assembler computes a target address relative to the program counter (pc).

Syntax.
1dx cond . rdst, ., addr
where:
cond
is an optional condition code.
rdst
is the register to be loaded.

addr
is a label or a numeric value.

When using pc-relative address, the “true value” of the pc is two instructions ahead of the
address of the executing instruction (4 bytes per instruction x 2 instructions = 8 bytes). The
reason for this inconsistency is because pc-relative addressing occurs after an instruction has
progressed through the ARM processor’s instruction pipeline.

Example 1.
ldr r0, .L16

loads the the address of the label .116 into the r0 register.
Example 2.
1ldr r0, .L16+4

loads the the address of the label .L16 plus 4 into the r0 register.
Example 3.
ldr r1, [fp, #-12]

loads the data using an indirect address expression. This example loads the value stored in the frame pointer
(fp) minus 12 into the r0 register.

APPENDIX A: ARM REFERENCE 97

mov

Copies a value into a register. Note that, because of space reasons, mov is limited to register-to-register copies,
or 16-bit immediate values. To copy larger values, like addresses, use 1dr.

Syntax.

mov s cond ., rdst, num?2
or mov cond _, rdst, #immlé

where:
S

is an optional suffix. If s is appended, condition flags are updated on the result of the operation.
cond

is an optional condition code.
rdst

is the destination register.
num?2

is either a constant or a register with optional shift.
imml16

is any value in the range 0-65535.

The mov instruction copies the value of num2 or #imm16 into rdst. In certain circumstances,
the assembler may substitute mvn for mov, or mov for mvn. Be aware of this when reading
disassembly listings.

Example.
mov r0O, #0

stores 0 into the r0 register.

98

pop

Pops registers off of a full-descending stack.
Syntax.
pop cond ., regset

where:
cond
is an optional condition code.
regset
is a non-empty set of registers, enclosed in curly braces. It can contain register ranges. It must be comma
separated if it contains more than one register or register range. The order that pop processes pops is register

order.
Be aware of the order that pop processes values. A simple mnemonic to remember the order
is “low addresses go in low registers.” In other words, the value at the top of the stack (the
lowest address in a full-descending stack) goes in the register with the lowest register number
in the given regset.

Example.

pop {fp, pc}

pops two values off the stack and stores them in the fp and pc registers. Since fp (register 11) comes before
pc (register 15) in register order, pop stores the first pop in £p and the second pop in pc. Here, the contents of
sp will be stored in £p, the contents of sp+4 will be stored in pc, and sp will be updated to sp+38.

APPENDIX A: ARM REFERENCE 99

puslh

Pushes registers onto a full-descending stack.
Syntax.
push cond ., regset

where:
cond

is an optional condition code.
regset

is a non-empty list of registers, enclosed in curly braces. It can contain register ranges. It must be comma
separated if it contains more than one register or register range. The order that push processes pushes is reverse
register order.

Be aware of the order that push processes values. A simple mnemonic to remember the order
is “low addresses go in low registers.” This is the same rule that pop uses. In other words,
the register with the lowest register number in the given regset will be stored at the top of the
stack (the lowest address in a full-descending stack).

Example.
push {fp, 1lr}
pushes the fp and 1r registers onto the stack. Since 1r (register 14) comes after fp (register 11) in register

order, push pushes 1r first and £p second. The contents of 1r will be stored at sp—4, the contents of £p will be
stored at sp—8, and sp will be updated to sp—S8.

100

str

Copies a value from a register into memory.
Syntax.
str type cond rsrc, . addr

where:

type
can be any one of

e B, an unsigned byte (zero extended to 32 bits on loads);
e H, an unsigned halfword (zero extended to 32 bits on loads); or
e omitted, the default, which is a 32-bit word.

cond
is an optional condition code.
rsrc
is the register to load the value from.

addr
is a label or a numeric value, denoting the location to store the loaded value.
Example.

str r0, [fp, #-8]

stores the value in the r0 register into the address stored in the frame pointer (fp) minus 8.

APPENDIX A: ARM REFERENCE 101

sub

Subtract without carry.
Syntax.

sub s cond ., rdst, rnuml, num?2
or sub cond . rdst, . rnuml, . #immi2

where:
s
is an optional suffix. If s is appended, condition flags are updated on the result of the operation.
cond
is an optional condition code.
rdst
is the destination register.
rnuml
is the register holding the first operand.
num?2
is either a constant or a register with optional shift.
imm12
is any value in the range 0-4095.

The sub instruction subtracts the value of num?2 or imm12 from the value in rnum1. In certain
circumstances, the assembler may substitute one instruction for another. Be aware of this
when reading disassembly listings.

Example.
sub sp, sp, #16

subtracts 16 from the contents of the sp register and stores the result in the sp register.

102

uxth

Zero extend byte.
Syntax.
uxtb cond rdst, . rnum, _ rot

where:
s

is an optional suffix. If s is appended, condition flags are updated on the result of the operation.
cond

is an optional condition code.
rdst

is the destination register.
raum

is the register holding the byte.
rot

can be any one of

e ror #8, meaning that rnum is rotated right 8 bits;
e ror #16, meaning that rnum is rotated right 16 bits;
e ror #24, meaning that rnum is rotated right 24 bits; or

e omitted, for no rotation.

utxb extends an 8-bit value to a 32-bit value. It does this by
1. rotating the value from rnum right by 0, 8, 16, or 24 bits;
2. extracting bits [7:0] from the value obtained; and

3. zero extending to 32 bits.

Example.
uxtb r3, r3

zero-extends the byte stored in register r3 and stores the result in register r3.

	Lab 0: Setting up your Raspberry Pi
	Learning Goals
	The Lab Kit
	Step 1: Flash Your SD Card
	Step 2: Connect a Serial Console Adapter to Your Computer
	Step 3: Start a Console Emulator on the Host Computer
	Step 4: Observe the Blinkenlights
	Step 5: Connect a Serial Console Adapter to the Raspberry Pi
	Step 6: Insert microSD Card and Power Up
	Step 7: Do a clean shutdown
	Step 8: Configure Console Dimensions
	Step 9: Configure Wifi
	Step 10: Install Some Software
	Step 11: Have a Little Fun: Network Scanning

	Lab 1: Login Security
	Learning Goals
	Required Reading
	Computing Environment
	Finding Documentation for C Functions
	Starter Code
	The Password Database
	Part 1: login0, a naïve login program
	Part 2: Attacking login0
	Part 3: login1, an improved login program
	Part 4: attack1, a brute force attack on login1
	Part 5: login2, an even-better login program
	Reflection Questions
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Pseudoterminals
	Terminals
	Pseudo Terminals
	How to Write a Control Program
	Development Tips

	Lab 2: Hashtables in C
	Learning Goals
	Requirements
	Inputs and Outputs
	Starter Code
	How to Start
	Gotchas

	Lab 3: Password Cracking
	Required Reading
	Requirements
	Inputs and Outputs
	Part 1: Dictionary Attack
	Part 2: Trading Time for Space
	Reflection Questions
	Bonus
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Lab 4: The A32 Calling Convention
	Learning Goals
	Requirements
	Starter Code
	Compilation
	Part 1: What does each step do?
	Part 2: Simulate a program on paper
	Part 3: Did you get it right?
	Part 4: Where are the following sections?
	Part 5: Modify the program

	Lab 5: Stack Smashing, Part 1
	Learning Goals
	Requirements
	Application code
	Environment set-up
	Step 1: Find the vulnerability
	Step 2: Jump to a different function
	Step 3: Filling a buffer with shellcode and executing it

	Appendix A: ARM Reference
	Register Mnemonics for A32 Calling Convention
	Status Flags
	A32 Calling Convention
	Instruction Mnemonics

	Appendix A: Instructor Notes
	To modify a Raspbian binary image
	To enable serial console in Raspbian
	To configure wireless in Raspbian
	To change the size of a terminal display

