Lab 1: Login Security

This lab explores the “hardening” of a program against a given attack. You will begin by writing a simple program. Next,
you will try to circumvent protections against the program. Then you will strengthen this program, and so on. In real life,
programs often undergo similar enhancements as security vulnerabilities are reported or exploited. This back-and-forth
between hardening and exploitation is a form of technological escalation often referred to as an "arms race.”

The application we focus on in this lab is a program you have used many times before, but probably never really thought
much about: the Login program. The lLogin program ensures that only authorized users are permitted to use a machine.
Since login must read the system’s protected /etc/shadouwfile, it needs elevated privileges to function. Therefore, bugs
ina login program can cause serious vulnerabilities.

Learning Goals

In this lab, you will learn:
e how to control an interactive program using a pseudoterminal;
e how to write a “brute force” procedure; and

e an effective set of countermeasures against brute force login attacks.

All of the topics in this lab require skills that you have already developed to some extent.
Many students find that this lab clarifies which programming skills are rusty or underdevel-
oped. Consider this assighment a warm-up for C programming and for using Makefiles. If
you struggle with parts of this or any other lab, make a note of the problem areas, and see
me for help. Computer security often exploits subtle weaknesses in computer systems, and
no security practitioner knows all of the things they need to know. Instead, they cultivate an
awareness of the limits of their knowledge, and develop the habit of rectifying those limits. If
you find this lab too easy—great! You'll be ready for the next one.




26

Required Reading

This lab refers to some other readings. You should read them when you reach those sections.

e Chapter 3 explains how to use a pseudoterminal to control a program.

Computing Environment

Remember that this assignment must be completed and submitting us-

ing our standard lab environment on your Raspberry Pi computer. See

Chapter 1 for instructions.

Finding Documentation for C Functions

Throughout this lab, you will need to find documentation for various C

functions. In Linux and in other UNIX-like operating systems, you can

find documentation on all system and C standard library calls using the

man command. man is short for “manual,” and it is broken into the fol-

lowing nine sections:

Section

Description

IO G = Wi

O

Executable programs or shell commands

System calls (functions provided by the kernel)

Library calls (functions within program libraries)

Special files (usually found in /dev)

File formats and conventions, e.g., /etc/passwd

Games

Miscellaneous (including macro packages and conventions)
System administration commands (usually only for root)
Kernel routines (non-standard)

For example, if I want to obtain documentation for the fgets function,

which is a part of the C standard library (aka libc), I would type the

following command into my shell:

$ man 3 fgets

If you don’t know what section a command or function might belong

to, you can use the apropos command:

Your system’s man page system will
refers to entries using a convention like
fgets(3). The meaning of this conven-
tion is that you can find information
about fgets in section 3 of the manual.
Type $ man 3 fgets to access it.



$ apropos fgets
fgets (3)

LAB 1: LOGIN SECURITY

- input of characters and strings

fgets_unlocked(3) - nonlocking stdio functions

fgetspent (3)
fgetspent_r(3)

- get shadow password file entry
- get shadow password file entry

The output says that the fgets function is in section 3, which is what

we used when we called man above.
Becoming familiar with man is your first step toward becoming a com-

petent systems programmer. If you want to know how to use a function,

you should turn to it first, since there are sometimes subtle distinctions
between the same function call from one operating system to the next.
Only the man page installed on your own computer is guaranteed to
be correct for your own system (in other words, sometimes Google is

wrong!).

Starter Code

This assignment comes with a small set of libraries and a Makefile for

you to use. You will need to modify the Makefile as a part of this as-

signment, but you need not modify any of the provided libraries.

The starter code contains the following files:

File

Purpose

password.db

console.c
console.h
database.c
database.h
ptyhelper.c
ptyhelper.h
Makefile

A password database.

File that contains the fgets_wrapper helper method.
API for console.c.

Library for reading the password.db database.

API for database.c.

Library for working with pseudoterminals.

API for ptyhelper.c.

A make specification for building your code.

You will need to add additional files as specified in each part below.

You are strongly advised to use the fgets_wrapper function provided

in the console library to obtain user input.

27



28

The Password Database

The password database, password.db, uses the following format:

username_1:password_1
username_2:password_2

username_n:password_n

Usernames and passwords may be up to § alphanumeric characters long.
Each username and password pair must be terminated with a newline
character (i.e., \n).

Part 1: Login0, a naive login program

In this part, you will write a login program in a file called 1ogin0. c. You
should be able to compile this program by typing make loginO, which
should produce a binary file called 1ogin0. You will need to modify the
Makefile to add a 1loginO compile target.

Specification:
1. The program should prompt the user to enter a username.
2. The program should attempt to locate the username in the database.

(a) Ifthe username is in the database, the program should prompt the
user to enter a password,'

(b) otherwise, the program should print USER NOT FOUND and then go
to step 1.

3. If the username is in the password database and the entered pass-
word matches the stored password in the database, then the program
should print ACCESS GRANTED and terminate.

4. Otherwise, go to step 1.

The following is a sample loginO session. Make sure your program
behaves exactly like this:

$ ./login0

Enter a username: barowy
USER NOT FOUND

Enter a username: dbarowy
Enter a password: password
ACCESS GRANTED

Observe that I didn’t specify one case. What to do is up to you.



LAB 1: LOGIN SECURITY 29

Part 2: Attacking login0

Before you write attack code, you will need to write code that lets you
supply inputs to 1login0. For those command-line applications that ac-
cept input on the “standard input stream” (aka, stdin) and provide
output on the ”“standard output stream” (stdout), programmatically
supplying inputs and capturing outputs is easy. If you've used UNIX
long enough, you have probably seen the pipe character, |. The pipe char-
acter “sends” one program’s output to another program'’s input by con-
necting the first program’s stdout to the second program’s stdin. For
example, the command echo "heya" | mail -s "just saying hi"
mail@example.com sends "heya" to the mail program via stdin which
then sends email to the given address. Give it a try. ! ! Just be sure to change the email ad-

Unfortunately, interactive programs like 1ogin0 are not so straightfor- dress first.
ward. The problem is that an interactive program is attached to a user’s
terminal, and it expects user input in a different form than stdin. For
example, if you use the fgets_wrapper function I provide, then when
a user types on their keyboard, characters are temporarily stored in an
array called a keyboard buffer. When the bulffer fills up, or if the user
presses the key, then it is flushed: the characters are removed from
the buffer and sent to the program.

Why buffer input? For two reasons. First, for performance reasons.
For many programs, there is no need to do work while the user is en-
tering their input. Second, to control the way data is delivered to a pro-
gram. If a keyboard buffer is 1024 bytes (the default on most Linux
systems), then the program can expect to receive data in chunks not
exceeding 1024 bytes in length.

fgets_wrapper uses buffered input primarily for the second reason,
so thatif a user types in a 9-character password when we're expecting an
8-character password, our login program can extract the right number of
characters from the buffer and discard the rest, preventing a user from
accidentally overflowing our password data structure. Unfortunately,
this means that if you pipe input to a program using fgets_wrapper, it
may not work as you expect, because parts of the input will be discarded.

Fortunately, there is a way around this. Instead of blindly trying to
feed input to the program through stdin, we can instead attach the pro-
gram directly to a “fake” terminal under our control. This fake terminal
lets us provide not only outputs, but to change those outputs based on
responses we see from the program we attach it to. Because this termi-
nal is not a real physical console, we call it a pseudoterminal.



30

pty, a pseudoterminal demo

The ptyhelper.c program supplied in your starter code demonstrates
how to create a pseudoterminal and attach it to a program you want
to control. Chapter 3 explains how to use the helper code to create a
program that controls another program.

In this part, you will create a file called pty.c. You should be able
to compile this program by typing make pty, which should produce
a binary file called pty. Since the supplied Makefile does not have
a rule to do this, you will need to modify it to add a pty target. Take
note that, when compiling with gcc, any program that makes use of the
ptyhelper library must include the -1util flag. The -1util flag tells
gcc to find several of the pseudoterminal functions in the 1ibutil.so

system library. 2 2ptyhelper.c calls the openpty C li-
brary function, which is not normally
in gec’s library search path. Append-
ing -lutil tells gcc to search for the
implementation of this function else-
where. How did I know to do this? man

Specification:
1. Write a program that attaches to login0. Call this program pty.

2. Call exec_on_pty with an appropriately constructed argv.

openpty told me to do it.
3. Manipulate the file descriptor returned by exec_on_pty using read
and write system calls. 3 % The read and write system calls can
read and write arbitrary data, including
4. pty should supply a single correct username and password (look in binary data. This means that, if you're

reading and writing strings, those
calls do not know and they do not
turns ACCESS GRANTED, and then quit with a non-zero exit code. help you handle strings. Recall that C
strings must always be null-terminated.
Does read ensure that strings are null-
YREWA ottackO: a “brute force” attack on login0 terminated? Read $ man 2 read to find

out!

the password.db file) to loginO, print It worked! when loginO re-

In this part, you will copy and modify pty.c in a new file called
attack0.c. You should be able to compile this program by typing make
attack0, which should produce a binary file called attack0. You will
need to modify your Makefile to add an attackO target.

Specification:

1. Write a program that “attacks” 1ogin0. The purpose of this program
is simply to harvest usernames, which is often the first step in attack-
ing logins. Call this new program attacko.

2. Your attack program should supply a randomly-generated up-to-8-
character username at the username prompt. Make sure that you
only generate alphanumeric characters. To generate a random inte-
ger, use the rand () C library call. You must also use srand(). See
man 3 rand for details.

3. If 1loginO prompts attack0 for a password, you have successfully
harvested a valid username. Since we don’t know the password, if
this happens, just provide the password password to the prompt. We
don't care about the response just yet.



LAB 1: LOGIN sEcURITY 31

4. Your program should attempt to login up to 10,000 times. If it finds
at least one valid username, it should print SUCCESS along with that
username and quit, otherwise it should keep trying. If it tries 10,000
times without success, it should print FAILURE and quit.

5. Optional. The above is obviously a naive method of harvesting user-
names. For bonus credit, devise a better method and implement it,
being sure to explain your method in a comment. Call the revised
program attackOa.c and be sure to add a Makefile target for it.

Part 3: Loginl, an improved login program

In retrospect, it is obviously a bad idea to tell the user when they have
successfully found a username. Instead, we should prompt for a user-
name and password before checking the database.

In this part, you will copy login0.c into a new file called logini.c.
You should be able to compile this program by typing make logini,
which should produce a binary file called logini. You will need to
modify the Makefile to add a logini target.

Specification:

1. Modify login0. Call this program logini.
2. The program should prompt the user to enter a username.
3. The program should prompt the user for a password.

4. If the username is in the password database and the entered password
matches the stored password in the database then the program should
print ACCESS GRANTED and terminate.

5. Otherwise, it should print ACCESS DENIED and go back to step 1.

The following is a sample logini session. Make sure your program
behaves exactly like this:

$ ./loginil

Enter a username: barowy
Enter a password: password
ACCESS DENIED

Enter a username:



32

Part 4: attackl, a brute force attack on loginl

In this part, you will copy attack0.c into a new file called attackl.c.
You should be able to compile this program by typing make attacki,
which should produce a binary file called attacki. You will need to
modify the Makefile to add an attackl target.

Specification:

1. Modify attackO to attack logini. Call this program attacki.

2. loginl makes it hard to harvest usernames. Unfortunately, user-
names are usually pretty easy to guess even if you can’t harvest them.
For example, in the CS department, most faculty usernames are the
first character of their first name and their last name. Assume that
you have already harvested usernames from another source, like a
company directory. You may use the usernames (but not the pass-
words) from the password.db file for attackl. Create a username
database for attack1 called usernames.db and put the usernames in
it.

3. Your attack program should randomly select a username from its
username database and randomly-generate an up-to-8-character pass-
word.

4. Your program should attempt to login up to 10,000 times. If it finds
a valid username and password combination, it should print “SUC-
CESS” along with the username and password and immediately quit,
otherwise it should keep trying. If it tries 10,000 times without suc-
cess, it should print “FAILURE” and quit.

5. Optional. Can you think of a better way to generate password guesses?
For bonus credit, implement a better guessing procedure. Be sure to
document your improvement in a comment. Call the modified pro-
gram attackla.c.

Part 5: attack2, an even-better login program

In this part, you will copy loginl. cinto a new file called login2.c. You
should be able to compile this program by typing make login2, which
should produce a binary file called 1ogin2. You will need to modify the
Makefile to add a login2 target.

How might you further improve 1login1? In this last section, you will
implement an improvement of your own design. Be sure to document
your improvement in a comment at the top of the source file.



Reflection Questions

Answer the following questions in a file called PROBLEMS . md, and submit

it with the rest of your code.

1.

2.

For our username scheme, how many possible usernames are there?

For our password scheme, how many possible passwords are there?

. When you ran attack0 against 1oginO0, did it find any working user-

names? If not, does it mean that login0 is ”"secure”? Why or why
not?

How might you modify attackO to find valid usernames faster? If
you did the bonus, explain here how that modification worked.

login1is obviously better than 1ogin0. Can you quantify why? Think
about your answers to the first two questions.

. When you ran attackl against login1, did it find any working pass-

word? If not, does it mean that logini is “secure”? Why or why
not?

What was your improvement in login2? Is it actually better? How
do you know? Be sure to provide a mathematical justification for full
credit.

Development Tips

Writing C can be a challenge. One way to deal with this is to log things

that happen, and use that information to help debug. Because this as-

signment puts restrictions on what you consume and print, you should

not use printf to log things. Instead, use a handy function like this one,

which prints to a log file instead.

void mylog(char *desc) {

static int n = 0;

FILE* file = fopen("DEBUGLOG.txt", "a");
if (file != NULL) {
n += 1;

fprintf (file, "J%d: %s", n, desc);
}
fclose(file);

LAB 1: LOGIN SECURITY 33



34

Remember to be patient and systematic. If you don’t understand your
own code, you should consider setting it aside and starting over.

Lab Deliverables

By the start of lab, you should see a new private repository
called cs3311ab01_login-{USERNAME} in your GitHub account (where
USERNAME is replaced by your username).

For this lab, please submit the following:

cs3311ab01_login-{USERNAME}/
attackO.c
attackl.c
console.c
console.h
database.c
database.h
loginO.c
loginl.c
login2.c (optionally)
Makefile
password.db
PROBLEMS .md

pty.c
ptyhelper.c
ptyhelper.h
README . md
usernames .db

where the login*.c, attack*.c,and pty. c files contain your well-documented
source code.

It is always a good practice to create a small set of tests to facilitate
development, and you are encouraged to do so here.

As in all labs, your work will be graded on the basis of design, docu-
mentation, style, and correctness. Be sure to document your program with
appropriate comments, including a general description at the top of the
file, and a description of each function with pre- and post-conditions
when appropriate. Also, use comments and descriptive variable names
to clarify sections of the code which may not be clear to someone trying
to understand it.

Whenever you see yourself duplicating functionality, consider mov-
ing that code to a helper function. There are several opportunities in
this lab to simplify your code by using helper functions.



LAB 1: LOGIN SECURITY 35

Submitting Your Lab

As you complete portions of this lab, you should commit your changes
and push them. Commit early and often. When the deadline arrives,
we will retrieve the latest version of your code. If you are confident that
you are done, please use the phrase "Lab Submission" as the commit
message for your final commit. If you later decide that you have more
edits to make, it is OK. We will look at the latest commit before the dead-
line.

Be sure to push your changes to GitHub. To verify your changes
on GitHub, navigate in your web browser to your private repository
on GitHub. It should be available at https://github.com/williams-
cs/cs3311ab01_logins-{USERNAME}. You should see all changes re-
flected in the files that you push. If not, go back and make sure you
have both committed and pushed.

Do not include identifying information in the code that you sub-
mit. We will know that the files are yours because they are in your
git repository. We grade your lab programs anonymously to avoid
bias. In your README.nd file, please cite any sources of inspiration or
collaboration (e.g., conversations with classmates). We take the honor
code very seriously, and so should you. Please include the statement "I
am the sole author of the work in this repository." in a com-

ment at the top of your C files.

Bonus: Feedback

I am always looking to improve our labs. For one bonus percentage
point, please submit answers to the following questions using the anony-
mous feedback form for this class:

1. How difficult was this assignment on a scale from 1 to 5 (1 = super
easy, ..., 5 = super hard)? Why?

2. Anything else that you want to tell me?

3. Your name, for the bonus point (if you want them).


https://williams-cs.github.io/cs331-f21-www/feedback.html
https://williams-cs.github.io/cs331-f21-www/feedback.html

36

Bonus: Mistakes

Did you find any mistakes in this writeup? If so, add a file called MISTAKES .md
to your GitHub repository and provide a bulleted list of mistakes. Be
sure to explain them in enough detail that I can verify them. For exam-
ple, you might write
* Where it says "bypass the auxiliary sensor" you should have
written "bypass the primary sensor".
* You spelled "college" wrong ("collej").

* A quadrilateral has four edges, not "too many to count" as you
state.

For each mistake I am able to validate, I will award limited bonus
credit, not to exceed 100% of your grade.



	Lab 0: Setting up your Raspberry Pi
	Learning Goals
	The Lab Kit
	Step 1: Flash Your SD Card
	Step 2: Connect a Serial Console Adapter to Your Computer
	Step 3: Start a Console Emulator on the Host Computer
	Step 4: Observe the Blinkenlights
	Step 5: Connect a Serial Console Adapter to the Raspberry Pi
	Step 6: Insert microSD Card and Power Up
	Step 7: Do a clean shutdown
	Step 8: Configure Console Dimensions
	Step 9: Configure Wifi
	Step 10: Install Some Software
	Step 11: Have a Little Fun: Network Scanning

	Lab 1: Login Security
	Learning Goals
	Required Reading
	Computing Environment
	Finding Documentation for C Functions
	Starter Code
	The Password Database
	Part 1: login0, a naïve login program
	Part 2: Attacking login0
	Part 3: login1, an improved login program
	Part 4: attack1, a brute force attack on login1
	Part 5: attack2, an even-better login program
	Reflection Questions
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Pseudoterminals
	Terminals
	Pseudo Terminals
	How to Write a Control Program
	Development Tips

	Lab 3: Stack Smashing, Part 1
	Learning Goals
	Requirements
	Application code
	Environment set-up
	Step 1: Find the vulnerability
	Step 2: Jump to a different function
	Step 3: Filling a buffer with shellcode and executing it

	Appendix A: ARM Reference
	Register Mnemonics for A32 Calling Convention
	Status Flags
	A32 Calling Convention
	Instruction Mnemonics

	Appendix A: Instructor Notes
	To modify a Raspbian binary image
	To enable serial console in Raspbian
	To configure wireless in Raspbian
	To change the size of a terminal display


