Lab 2: Hashtables in C

In this assignment, we will explore hsearch, a hash table library for C that comes with Linux.

The hsearch(3) library is a hash table implementation for C. Because
hsearch is a part of the POSIX standard,! you can find it preinstalled on
many operating systems.

The fact that hsearch is written in C means that it has a few quirks you
should be aware of. The fact that its designers apparently thought that
nobody would ever need more than one hash table is also a little strange.
Nevertheless, hsearch is a fast hash table implementation, and after you
understand its idiosyncrasies, it is relatively easy to use.

hsearch(3) only has three function calls: hcreate, which creates the ta-
ble, hsearch which both searches the table and adds entries, and hdestroy,

which deallocates the table. For a list of the quirks, be sure to see sec-
tion 4.6 at the end of this handout.

Learning Goals

In this lab, you will learn:

e how to work with the hsearch(3) hash table;

e get some practice manually allocating and deallocating data.

1 POSIX stands for “Portable Operating
Systems Interface.” It defines what

C APIs, libraries, and other standard
components an operating system must
have in order to be UNIX-like. Standards
like POSIX are extremely important in a
world that has many operating systems:
Linux, macOS, FreeBSD, Solaris, and

so on. If you write a program with

the POSIX standards in mind, then

it is likely that your code will run on
many operating systems with little to no
customization.



46

Requirements

Collaboration. This is an ungraded assignment. You may work with
whomever you wish.

Language and Libraries. Your solution must be written using C. Only use
the built-in C libraries. Do not download any additional libraries.

Inputs and Outputs

The file, passwords.db, is a (real-ish) leaked password database of the
following form:

username] ,passwordy
usernamep,passwordsy

usernamey, ,passwordn,

We want to answer the question: how often are passwords reused? To
do this, you will build a hash table that maps each unique password you
encounter to a simple count. These counts should then be printed out

as follows: For this lab, the order of the output is

not important.
passwordj: countg

passwordo: countgp
passwordy,: count,

You can check that your implementation did the right thing by saving
the program’s outputs to a file and then comparing them against the
database. For example,

$ ./password_counter > outputs.txt
$ head outputs.txt

pipikb3: 1

Pohled267: 2

AbpoHuQEpp: 3

martinstrakal7: 2

271987: 1

pamela: 1

HB65FeScow: 1

cacuvo39: 2

tulen777: 2

JLurRn9F6F: 2

$ grep AbpoHuQEpp passwords.db
Finochio, AbpoHuQEpp
Antonio_Crespo,AbpoHuQEpp
Blahonovsky6 ,AbpoHuQEpp

Three users share the password AbpoHuQEpp, so you can see that our
password_counter program correctly counted them.



LAB 2: HASHTABLES IN Cc 47

Starter Code

Starter code is provided for this lab. Download the starter, unzip it, and

then you can work with it. If you don’t have wget or unzip installed
on your computet, you can install them
$ wget https://csci331.s3.amazonaws.com/hashtable-starter.zip with apt.

$ unzip hashtable-starter.zip

How to Start

The starter code includes a number of sections marked TODO in the com-
ments. You should replace these TODOs with your own code.

I also provide a small set of #define statements at the top of the starter
code. These should provide some important clues about how to work
with your table.

You canlearn about the hsearch (3) hash tableby typing $ man 3 hsearch.
Note that the man page includes sample code.

Gotchas

There are some important caveats about the hsearch implementation
that you should be aware of.

e You can have at most one hash table at a time. Consequently, you are
never given the ability to save a pointer to this data structure.

e Create a new database using the hcreate function. hcreate takes a
parameter for the maximum size of the table. For performance rea-
sons, you should set it to be 25% larger than the maximum number
of elements than you expect to store in the table.

e Storing and retrieving from the table uses the same function, hsearch.
The behavior of this function depends on the action argument, ei-
ther ENTER or FIND.



48

Elements cannot be deleted from the table, but they can be updated.
Because this is C, you should think carefully about you really do need
to reinsert elements when updating. An alternative approach is to
modify the data value through a pointer.

When you store in the hash table, what is stored is a copy of a pointer
to a key and a copy of a pointer to a data item.

The type of the key is always a string pointer, namely a char *.

The type of the data is always a void *, which essentially means “a
pointer to something.” For example, if you store a string pointer in
the data field, you will need to cast it like (char *) when you read
it out.

hdestroy only deallocates the keys in the table, not the data. You will
need to manually deallocate the data yourself.

When storing data in your table, I suggest that you store copies of
key and data values. For example, supposing char* key and char*
value are initialized elsewhere,

ENTRY e, *ep;

e.key = strdup(key);
e.data = strdup(value);
ep = hsearch(e, ENTER);

strdup makes a copy of a string by calling malloc and then copying
the string data into the new location.

Finally, remember to verify that the hsearch function is successful.
The man page explains how to check for success.

Be aware that your own e.data value
in this lab will not be a charx* as in the
example. It should be a int*.



	Lab 0: Setting up your Raspberry Pi
	Learning Goals
	The Lab Kit
	Step 1: Flash Your SD Card
	Step 2: Connect a Serial Console Adapter to Your Computer
	Step 3: Start a Console Emulator on the Host Computer
	Step 4: Observe the Blinkenlights
	Step 5: Connect a Serial Console Adapter to the Raspberry Pi
	Step 6: Insert microSD Card and Power Up
	Step 7: Do a clean shutdown
	Step 8: Configure Console Dimensions
	Step 9: Configure Wifi
	Step 10: Install Some Software
	Step 11: Have a Little Fun: Network Scanning

	Lab 1: Login Security
	Learning Goals
	Required Reading
	Computing Environment
	Finding Documentation for C Functions
	Starter Code
	The Password Database
	Part 1: login0, a naïve login program
	Part 2: Attacking login0
	Part 3: login1, an improved login program
	Part 4: attack1, a brute force attack on login1
	Part 5: attack2, an even-better login program
	Reflection Questions
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Pseudoterminals
	Terminals
	Pseudo Terminals
	How to Write a Control Program
	Development Tips

	Lab 2: Hashtables in C
	Learning Goals
	Requirements
	Inputs and Outputs
	Starter Code
	How to Start
	Gotchas

	Lab 3: Password Cracking
	Required Reading
	Requirements
	Inputs and Outputs
	Part 1: Dictionary Attack
	Part 2: Trading Time for Space
	Reflection Questions
	Bonus
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Lab 4: Stack Smashing, Part 1
	Learning Goals
	Requirements
	Application code
	Environment set-up
	Step 1: Find the vulnerability
	Step 2: Jump to a different function
	Step 3: Filling a buffer with shellcode and executing it

	Appendix A: ARM Reference
	Register Mnemonics for A32 Calling Convention
	Status Flags
	A32 Calling Convention
	Instruction Mnemonics

	Appendix A: Instructor Notes
	To modify a Raspbian binary image
	To enable serial console in Raspbian
	To configure wireless in Raspbian
	To change the size of a terminal display


