Lab 3: Password Cracking

In this assignment, we will explore the space-time tradeoffs of some data structures used to crack passwords. Because
stolen password databases are a real problem, most reasonably secure password database implementations do not store
passwords in plaintext form.

Your task is to explore several schemes used to recover passwords from
password databases, a process often referred to as password cracking.

This assignment is split into two parts. In part 1, you will implement and
generate a cracked password dictionary. In part 2, you will implement
and generate several variations on precomputed hash tables, including
rainbow tables. In both parts, you will attempt to recover plaintext pass-
words from an encrypted password database.

Required Reading

Please read “Why Stolen Password Databases are a Problem” and “Trad-
ing Time for Space. Both readings are available on the course website.

Requirements

Collaboration. This is an individual assignment. All of the code you sub-
mit must be written exclusively by you. You are welcome to collaborate
with a classmate to understand the assignment, and to discuss how a
solution should work at a high level, but you must not share code. Rule
of thumb: if you are looking at code on someone else’s screen, it’s an
honor code violation.

50

Language and Libraries. You solution must be written using C. Only use
the built-in C libraries and the 1ibmd library, which contains an imple-
mentation of the MD5 hash algorithm. Do not download any additional
libraries. If you are at all uncertain about which libraries are OK and
which are not, please ask me. You are welcome to use any code I give
you as a starting point.

To install 1ibmd on your Raspberry Pi, type:

$ sudo apt install libmd-dev

Common environment. If you wish, you may develop this code on your
own machine, but please be sure to test it on your class Raspberry Pi be-
fore submitting. If you develop on a machine different from your Rasp-
berry Pi, there will be differences, and some potential differences mean
that your code may not build at all. All assighments will be graded us-
ing the Raspberry Pi.

Stack Overflow. You are permitted to refer to Stack Overflow for help,
but you must not under any circumstances copy the code you see there. If
you find a helpful Stack Overflow post, you must attribute the source of
your inspiration in a comment at the appropriate location of your code,
and you must provide a URL for me to look at. Unattributed code will
be considered an honor code violation.

Instructions for Compiling and Running. You must supply a file called
BUILDING.md with your submission explaining how to:

1. compile your program,' and

2. how to run your program on the command line.

Reflection questions. This assignment asks you to answer a few ques-
tions. You must supply the answers to these questions in a file called
PROBLEMS . md.

Starter code.
The starter code contains the following files:

File | Purpose

epassword.db | An encrypted password database.
database.c | Library for reading the epassword.db database.
database.h | API for database.c.

You will alsobe given a zipped, encrypted database, encrypted_db. txt.

If I can’t build your code,
I can’t grade it. That will
likely have a negative effect

on your grade.

! Hint: I should be able to just type make.

Inputs and Outputs

The file, encrypted_db.txt, is a password database of the following
form:

usernamej,pwhash;

username2 ,pwhashy

usernamen, ,pwhashy,

where username; is an alphanumeric user name, and where pwhash;
is a 32 digit hexadecimal number (i.e., 16 bytes), representing a pass-
word hash.

Since we are exploring the scenario where you possess a stolen pass-
word database, you will have direct access to the database file.

Passwords are hashed using the MD5 cryptographic hash algorithm?.
Password plaintexts, which are not stored in the password database, are
composed of the following characters: 0-9 and A-F, and are exactly 4
characters long. This file is the input to your program.

In both parts 1 and 2, you will be decrypting this database. Your goal
in both cases is to produce as output a “cracked” password database of
the form:

username] ,passwordj
usernames,passwords

usernamen ,passwordy,

Your decrypted database must be sorted by username.

To ensure that your code is working correctly, here are some sample
plaintext passwords for a few users in the dictionary:

dbarowy ,BA1D
ihowley ,FOOD
wjannen , CAFE

Part 1: Dictionary Attack

In this part, your job is to crack the encrypted_db.txt database using
a dictionary attack. You should be able to call your program from the

LAB 3: PASSWORD CRACKING 51

2 https:/ /en.wikipedia.org/wiki/MD5

52

command line like so:

$./dictattack <encrypted database> <decrypted database>

where <encrypted database> is the path to your encrypted database,
epassword.db, and <decrypted database> is the path where you want
the decrypted database to be written.

Your code should haveadictattack. c file containing a main method.
You should also create a library called crackutil.c that comes with a
crackutil.h file.

I describe the pieces you must implement below in order to assemble
your dictionary attack. Ileave unspecified how these pieces fit together,
but if you understand dictionary attacks, the correct way to connect the
pieces will be obvious.

LYWl Plaintext generator
ol/7\, Always document your
A dictionary attack needs a way of generating all possible plaintexts. [functions so that others can
understand them without

Create two files called crackutil.h and crackutil.c. In crackutil.h, : ! _
readlng your 1mplementat10n.

insert the following function signature, and in crackutil. c, implement Here is a suggested comment for this
it: function:
void genPlaintext(char *dst, int n); /%)
* Generates the nth plaintext.
where dst is a pointer to a string buffer and n is a number between 0 o 2 N o ernoen 0 aie sosss.

and 65535. genPlaintext should write a 4-character plaintext into dst N

using the set of characters described above (see “Inputs and Outputs”).
You may implement this function any way you want, but you need to
be sure that the function is capable of generating all possible plaintexts
using our scheme. One such scheme might produce a mapping from

inputs to outputs like so: o)/7\, Youmay find the snprintf
o function helpful for this step.

0 0000 See $ man 3 snprintf for
1 0001 details.
2 0002
331 014B
65535 FFFF
Note that the set of valid password plaintext characters just happens
to be the same set of characters used when printing a number in hex-
adecimal format.3 In fact, if you look carefully at the sample mapping 3 https://en.wikipedia.org/wiki/Hexadecimal

above, an algorithm that reproduces it should suggest itself.

LXWA Cipher function

A dictionary attack must be able to run the same cryptographic hash
function that a password scheme uses to hash plaintexts. Since crypto-
graphic functions are not usually secret, we will assume that we know

what function our targeted password system uses. For this assignment,
will assume that the MD5 cryptographic hash function is being used.
The MD5 algorithm is in the 1ibmd-dev package. * This library is
slightly cumbersome to use, so instead of using it directly, I provide a
straightforward wrapper function.
First, be sure to include the appropriate 1ibmd header:

#include <md5.h>

Then, put the following function in your crackutil.c. Don’t forget
to update crackutil.h with the appropriate function signature.

J k¥

Hashes password using MD5. Assumes that password
1s exactly PTLEN-1 chars and that hash <s a pointer
to an array of length MD5_DIGEST_LENGTH.

@param password A string to hash.
@param dst

* % * x X %

A pointer to an array to store the hash.
*/
void hash(char* password, uint8_t* dst) {
MD5_CTX ctx;
MD5Init (&ctx) ;
MD5Update (&ctx, (uint8_t*)password, PTLEN-1);
MD5Final (dst, &ctx);

The password argument to the hash function is a pointer to a plaintext
password string, and the dst argument is a pointer to an uint8_t array
long enough to hold a 16-byte MD5 hash. The md5 . h header defines the
constant MD5_DIGEST_LENGTH, which is the correct length of the uint8_t
array to use for dst.

Note that I leave it up to you to define PTLEN which represents the
length of the plaintext buffer, password. How long do you think PTLEN
should be? Put a preprocessor #define in your crackutil.h to define
this constant, like so:

#define PTLEN <some number>

Finally, 1ibmd is a shared library, which means that you need to pro-
vide gcc with a linker flag. The linker flag for 1ibmd is -1md. Remember,
linking, which is the step your compiler takes when it joins library files
together with your program source code, happens when you are pro-
ducing the final program binary. The program binary is the one that
contains your main method.

Bonus: if you read the man pages for the MD5 functions used in the
hash function, you will discover that while my implementation is cor-
rect, it is somewhat inefficient. If you want to optionally push your knowl-
edge further, try using them as the documentation suggests instead of
using my wrapper function.

LAB 3: PASSWORD CRACKING 53

4 See section 5.2 for installation instruc-
tions.

A widely-held principle in
computer security is that
mechanisms should be fun-
damentally secure. In other
words, knowing how they
work should not prevent them from be-
ing effective protections. Consequently,
all widely-deployed cryptographic algo-
rithms are developed in full public view.
Relying on secrecy as a security mecha-
nism is often derisively called “security
through obscurity,” and it should be
avoided because once an attacker learns
your secret, your defenses evaporate.

‘ Q\u;@

¥,
N

01/ ™\0 A uint8_t is an unsigned,

2o 8-bit integer. Remember that
one byte is represented by 8
bits in most modern computer

hardware, so a uint8_t is also a byte.

If you type $ man 3 md5,

% you will see that the MD5
;:éj/;.. documentation refers to

“message digests”. A digest is

another name for a ciphertext

produced by a hash algorithm.

54

Pretty printing

You will likely want to print your hash values out at various points in the
development of dictattack. One reason to do this is to verify that your
MDS5 hashes are correct. For example, the plaintext 000F should hash to
an MD?5 that prints out as 4563242B09337E7FC4415AAF9E098491.

Conventionally, we print an MD5 value as a 32-digit hexadecimal
number. This length makes sense because an MD5 hash is an array of
16 uint8_t values. Since one byte can be represented by two hexadeci-
mal digits, 16 x 2 = 32, meaning that we expect a 32-digit hexadecimal
string as output.

Write an implementation for the following function signature, and
add it to crackutil.c. Be sure to update your crackutil.h header.

void hashToString(uint8_t* hashbuf, char* dst);

The argument hashbuf is a pointer to your MD5 in array form, and
dst is the destination buffer for your pretty-printed MD5 string. You
are strongly encouraged to add a #define representing the correct MD5
string length to your crackutil.h.

Database reader

A dictionary attack must be able to read in a stolen password database.
Write a method with the following signature and add it to crackutil.c
and crackutil.h.

list_t* readPasswords(char* path) {

The argument path is a path string, like "epassword.db". The return
value is a linked list of password data, where a list node is defined in
database.hasalist_t:

typedef struct node {
pwent_t data;
struct node * next;
} list_t;
And, for completeness, where the list node’s data item is a kind of struct,
called pwent_t, defined as:

typedef struct pwent {
char username [ULEN];
char password[PWLEN];
} pwent_t;

You are encouraged to use the read_pwdb function from database.h.

Since readPasswords returns a linked list, I can access individual en-
tries either by searching for them using 1ist_find from database.h, or
by traversing the list as follows:

list_t* db = readPasswords("some_database.db");
list_t* finger = db;

LAB 3: PASSWORD CRACKING bb

while(finger->next != NULL) {
printf ("username: %s\n", finger->data.username);
printf ("passhash: %s\n", finger->data.password);
finger = finger->next;

}

Finally, if you use read_pwdb, be aware that it allocates memory using
malloc, which means that somewhere in your program, you will need
to free the data structure it returns. Think carefully about how to free
it.

Hash table

The C standard library on most UNIX machines come equipped with an
implementation of a hash table called hsearch. You can learn about this
hash table by typing $ man 3 hsearch, which includes sample code.
You will use the hsearch database to create a dictionary for this lab.

There are some important caveats about the hsearch implementation
that you should be aware of.

e You can have at most one hash table at a time. Consequently, you
never are given the ability to save a pointer to this data structure.

e You create a new database by using the hcreate function. hcreate
takes a parameter for the maximum size of the table. For performance
reasons, you should set it to be 25% larger than the maximum number
of elements than you expect to store in the table.

e Both storing and retrieving from the table use the same function,
hsearch. The behavior of this function depends on the action ar-
gument, either ENTER or FIND.

e Elements cannot be deleted from the table.

e When you store in the hash table, what is stored is a copy of a pointer
to a key and a copy of a pointer to a data item.

e The type of the key is always a string pointer, namely a char *.

e The type of the data is always a void *, which essentially means “a
pointer to something.” If you stored a string pointer in the data field,
you will need to cast it, e.g., (char *), when you read it out.

e Finally, hdestroy only deallocates the keys in the table, not the data.
When deallocating, you will need to carefully consider how to deal-
locate both keys and values.

Finally, because of the last item above, I suggest that when storing
data in your table, that you store copies of key and data values. For
example,

56

ENTRY e, *ep;
e.key = strdup(key);
e.data = strdup(value);
ep = hsearch(e, ENTER);
Remember to verify that the hsearch function is successful. The man
page explains how to check for success.

LXXY Dictionary-based cracking algorithm

Your main method should systematically call genPlaintext and, for
each plaintext generated, call your hash function to generate a cipher-
text. Every pair of plaintext and ciphertext should be stored in a hash
table, otherwise known as a dictionary. Since our hash table implemen-
tation requires char * as keys, you will need to call your hashToString
function to convert the has to a string. After generating this table, you
will read entries from the epassword.db encrypted file, look up the
hashed password in your dictionary, and decrypt it. Each user and their
decrypted password should be printed out in the form:

username] ,passwordj
usernamep,passwordsa

usernamep, ,passwordn,

Finally, your algorithm must ensure that the output, which you should
call password.db, is in alphabetical order. Since epassword.db is al-
ready in the correct order, you just need to preserve this order.

Part 2: Trading Time for Space

Dictionary attacks are an effective tool when time and space are not an

issue.” Unfortunately, distributing dictionaries can be cost-prohibitive % For example, you are a government-
level attacker who can devote super-

. . .) computing resources to solving the
hash chains and rainbow tables address this problem, making cracked problem.

even for password schemes with only modest complexity. Precomputed

password databases smaller. They work by trading extra time to per-
form a lookup for reduced space used by the data structure.

In this part, you will write an implementation that hashes with a con-
figurable “table type.” Your implementation should be callable on the
command line like so:

$./hashchain <encrypted database> <decrypted database> <type> <width> <height>
where

<type> is exhaustive, random, or rainbow; <width> is the width of
the hash chain table (in other words, the length of the hash chain);

LAB 3: PASSWORD CRACKING 57

<height> is the number of hash chains generated; <encrypted database>
is the path to your encrypted database; and <decrypted database> is
the path where you want the decrypted database to be written.

Your code should have ahashchain. c file that contains a main method.
You are encouraged to reuse your code you developed for your dictio-
nary attack in this section, and I encourage you to add new helper func-
tions to your crackutil.c.

Reduction function

An attack using precomputed hash chains requires a so-called reducer,
a function that maps ciphertexts to plaintexts. Note that a reducer does
not compute the hash inverse; in general, computing hash inverses is
infeasible. Instead, the purpose of a reducer is to select a new plaintext
(using a ciphertext) so that hashes can be “chained” together. Reducers
are used as a kind of space-saving mechanism, allowing us to store only
the starting point and ending point of a hash chain.
Add a function with the following signature to your crackutil:

void reduce(uint8_t* ciphertext, int index, char* buf);

where ciphertext is the ciphertext to reduce, index is a number that
selects a reduction function, and buf is a pointer to a buffer to store a
plaintext. When you call reduce, it should return a plaintext.

There are many ways to reduce a ciphertext, but the most important
criterion is that the reducer must be able to produce any possible plain-
text given its input domain (all possible ciphertexts). For example, one
such implementation might produce the following mapping from ci-

phertext to plaintext:

reduce (AA338257F792484CAEBOOFC3D8A708AF, 0, ...) — AA33
reduce (67BEOA3E4E7DF1C975A5B1FCAAB8CF6B, O, ...) — 57BE
reduce (C90874550C415765F8B15B45E4F64A9E, 0, ...) — C908

Changing the index parameter might produce the following:

reduce (AA338257F792484CAEBOOFC3D8A708AF, 1, ...) — A338
reduce (57BEOA3E4E7DF1C975A5B1FCAABSCF6B, 1, ...) — 7BEO
reduce (C90874550C415765F8B15B45E4F64A9E, 1, ...) — 9087

Precomputed hash chain (PCHC) table

In this part, you will generate a precomputed hash chain (PCHC) table.
To generate a PCHC table, you will need to reuse your genPlaintext
function from Part 1. Write a table-generating function that has the fol-

58

lowing signature:

int genTable(tabletype_t type,
int width,
int height,
char** keys);

where type is the following C enum

typedef enum tabletype {
EXHAUSTIVE,
RANDOM,
RAINBOW

} tabletype_t;

where height is the number of chains to be generated, where width is
the number of reductions applied in a given chain, and where keys is a
pointer to an array that stores the hash table’s keys for later deallocation.

The function should return the number of chains inserted into the
table.

Remember from the reading that a PCHC table maps plaintexts to
plaintexts. Ciphertexts are not stored in the table at all!

Asin part 1, I suggest using the hsearch hash table implementation,
where the key is a plaintext starting point and the data is a plaintext
ending point. Because hsearch cannot store duplicate keys, you will
be limited to storing only one chain for a given starting point. There-
fore, some chains will need to be discarded. I leave it to you to decide
whether you should discard the new chain or the old chain. Either way,
decryption rates will be lower than if you use a data structure that does
not discard chains. For the purposes of assignments, discarding chains
is fine, but if you want an extra challenge, try designing an alternative
data structure.

You must be able to generate the following table types:

e EXHAUSTIVE. Generate a PCHC table of size width X height by sys-
tematically enumerating all possible plaintexts. If width x height
< | P|, where P is the set of all possible plaintexts, then just enumer-
ate the first width x height passwords.

e RANDOM. Generate a PCHC table of size width X height by randomly
selecting plaintexts.

e RAINBOW. Generate a rainbow table of size width x height by ran-
domly selecting plaintexts.

Note that the only difference between an ordinary precomputed hash
chain table and a rainbow table is how reducers are applied. In an or-
dinary table, one applies a fixed reducer (e.g., reduce (ciphertext, 0,
...)) atevery step in a chain. In a rainbow table, one applies a different
reducer for every reduction step in a chain.

LAB 3: PASSWORD CRACKING 59

For example, the first reduction might be called with reduce (ciphertext,

0, ...),thesecondreduction mightbe called with reduce (ciphertext,
1, ...),thethird reduction mightbe called with reduce (ciphertext,,
2, ...),and so on, up to reduce(ciphertext,_1, n, ...), wherew
is the width of the table.

Bl Convert from char* ciphertext to uint8_t array

At some point during this lab, you will need to convert from the base-64
encoded hash strings stored in the encrypted password database to the
uint8_t arrays that the MD5 values that your hash and reduce func-
tions use. To do this, you will have to think back to CSCI 237 a bit.
Here’s the signature of the function you should write.

void hashFromString(char* ciphertext, uint8_t* dst)

where ciphertext is a hexadecimal string like
14456DED73AF945CE2B3AFF7260D4B34 and dst is an array of uint8_t
values big enough to store the numeric representation of a hash.

This problem is not hard if you break it down into pieces. The most
important piece of information is that each pair of hexadecimal digits
encodes a single byte. Recall that a uint8_t is a byte.

For example, the hexadecimal string B4 is the decimal number 180.
We handle each hexadecimal character—one nibble—at a time. The low-
order hexadecimal nibble 4 is the decimal value 4. The high-order hex-
adecimal nibble B is the decimal number 11 x 16. To find the combined
value, add the two numbers together: B4 = 4 + 11 x 16 = 180.

If you've implemented this step correctly, you should be able to com-
pute a “round trip” of a base-64 encoded hash string through your
hashFromString and hashToString functions. The starting and ending
strings should be the same. For example,

char *ciphertext = "14456DED73AF945CE2B3AFF7260D4B34";
uint8_t ct[CTNUMBYTES];

hashFromString(ciphertext, ct);

char ciphertext2[HASHHEXLEN];

hashToString(ct, ciphertext2);

printf("'%s' is '%s'\n", ciphertext, ciphertext2);

The above should print out:

'14456DED73AF945CE2B3AFF7260D4B34"' is '14456DED73AF945CE2B3AFF7260D4B34"'

PCHC table lookups

To lookup a decryption, you will need to supply the following lookup
function:

60

void lookup(char* ciphertext,
tabletype_t tt,
int width,
int height,
char* buf);

where ciphertext is a ciphertext string, tt is the table type, width is the
table width (or chain length), and height is the table height (or number
of chains).

The function should return true if a decryption was found, otherwise
it should return false. You can use bool values in C by including the
following header:

#include <stdbool.h>

The algorithm for performing a PCHC lookup is discussed in the
“Trading Time for Space” reading. Note that lookups for rainbow ta-
bles work differently than for vanilla PCHC tables, because searching a
chain for a ciphertext involves not just hashing and reducing, but hash-
ing and reducing using the same sequence of reductions used to origi-
nally construct the table. If this does not make sense to you, I strongly
recommend simulating a rainbow table lookup on paper (perhaps with
some help from the reference implementation) until you see why.

Generating a cracked password database

Finally, as in Part 1, your main method should read the password database
(reusing your readPasswords function), generate a table of the requested
type (using genTable), and then should attempt to decrypt all of the
password hashes stored in the database (using the lookup function),
writing out the ones it can decrypt to a file.

Your implementation should report the following two statistics:

1. the number of hash chain collisions (i.e., the number of hash chains
with the same endpoint), and

2. the number of successful decryptions.

You should expect that your code will be tested against both the sup-
plied database and a database of my choosing. Note that any technique
based on precomputed hash chains is unlikely to be 100% successful at de-
crypting all of the hashes, because collisions are hard to avoid. Nonethe-
less, if your lookup fails close to 100% of the time, something is wrong
with your code.

The following chart, generated using my own code, should give you
a sense of the kinds of decryption rates you can expect with a correct
implementation.

LAB 3: PASSWORD CRACKING 61

Decryption Ratesfor Hash Chain Algorithms
(Table height = 65536/width)

120

100

80

60

% Decrypted

40

20

1 2 3 4 5 6 7 8 9 10
Table width (aka chain length)

=& Exhaustive (EXHAUSTIVE)
~—o—PCHC (RANDOM)
=& Rainbow (RAINBOW)
Rainbow (no duplicate starts)
==& Rainbow (no dupes & perfect reducer)

Reflection Questions

Provide answers to the following questions in a file called PROBLEMS . md.

1. The password scheme in Part 1 has 65,536 possible passwords. How
many passwords would an up-to-8 character alphanumeric (upper-
case and lowercase) scheme have, assuming that the empty password
is disallowed? Explain your derivation.

2. Using your own implementation as a benchmark, how long do you
estimate that it would take to generate a dictionary for the scheme in
the previous question?

3. How many [mega/giga/tera/peta] bytes would it take to store a pass-
word dictionary for such a scheme assuming that password fields
are always 8 bytes (where entries shorter than 8 bytes are NULL-
padded) and where password hashes are 16 byte MD5 hashes? For
simplicity, ignore the existence of hash collisions.

62

4. Given your answer to the previous question, what are the drawbacks
when using your dictionary attack implementation for a password
scheme like the one discussed in the previous questions? Think about
the compute resources you actually used when performing your at-
tack (CPU, RAM, disk; hint: where did you store data structures as
you carried out your attack?). How might you modify your dictio-
nary attack implementation to address the limitations you identify?

5. Why are we unable to decrypt all of the passwords in Part 2? Do you
think a different reducer would help?

Bonus

Compute the success probability formula found at the top of page 6
in the paper “Making a Faster Cryptanalytic Time-Memory Trade-Off”.
What is the expected success probability for a table of width 16 and a
height of 4096? Note that Oechslin states that the probability that any
two plaintexts collide is -, where m is the number of possible plaintexts,
which assumes, somewhat optimistically, that both the hash function
and reducer select values perfectly uniformly at random. The number
of successes you observe will probably be lower. Estimate your hash
collision probability empirically by generating a table of width 1 and a
height of m. How close is your implementation? Also note that Oech-
slin’s notation is a little different than the notation we use in class.

Development Tips

This assignment may seem overwhelming; in actuality, like most soft-
ware, it merely contains a large number of small steps. Work system-
atically, finishing off each step, and you will successfully complete the
entire assignment.

o The password scheme we are attacking has 16* possible passwords,
which is a big-ish number. But none of the techniques above actually
depend on that number. Do yourself a favor and work on a smaller
instance of the problem. For example, you might define a constant
PWLEN that says how long a password is, and during development,
#define PWLEN 1. This will make testing much faster, since you can
manually check by hand whether your code is doing the right thing.

LAB 3: PASSWORD CRACKING 63

e Ciphertexts are a uint8_t*, which is a little bit of a pain, since you
can’t print them directly during debugging. Do yourself a favor and
use the “pretty print” function for ciphertexts we came up with so
that you can print them in debug output.

e You should be able to simulate dictionary, precomputed hash chain,
and rainbow table lookups on paper. Be sure to work through each
algorithm on paper first. If you are struggling with this part, I am
happy to meet with you during office hours. Working with a friend
on lookups is also an excellent use of a study group, particularly since
I think that performing a lookup on paper is a fair question to ask on a

6

midterm exam. 6 HINT HINT HINT.

e Finally, it’s not a bad idea to implement genTable and lookup first
only for the EXHAUSTIVE scheme, then the RANDOM scheme, then finally
the RAINBOW scheme. Each scheme adds a little bit of complexity, so
you can rule out problems by building your tool end-to-end for the
simplest scheme (EXHAUSTIVE) first.

Lab Deliverables

By the start of lab, you should see a new private repository called cs3311ab02_pwcrack-USERNAME
in your GitHub account (where USERNAME is replaced by your username).
For this lab, please submit the following;:

cs3311ab02_pwcrack -{USERNAME}/
BUILDING.md
PROBLEMS .md
README .md
crackutil.c
crackutil.h
dictattack.c
epassword.db
hashchain.c
Makefile

where the . ¢, .h, and Makef ile files contain your well-documented source
code. You may also add additional source files if you want.

It is always a good practice to create a small set of tests to facilitate de-
velopment, and you are encouraged to do so here.

As in all labs, you will be graded on design, documentation, style, and
correctness. Be sure to document your program with appropriate com-
ments, including a general description at the top of the file, and a de-
scription of each function with pre- and post-conditions when appro-

64

priate. Also, use comments and descriptive variable names to clarify
sections of the code which may not be clear to someone trying to under-
stand it.

Whenever you see yourself duplicating functionality, consider moving
that code to a helper function. There are several opportunities in this
lab to simplify your code by using helper functions.

Submitting Your Lab

As you complete portions of this lab, you should commit your changes
and push them. Commit early and often. When the deadline arrives,
we will retrieve the latest version of your code. If you are confident that
you are done, please use the phrase "Lab Submission" as the commit
message for your final commit. If you later decide that you have more
edits to make, it is OK. We will look at the latest commit before the dead-
line.

Be sure to push your changes to GitHub. To verify your changes
on GitHub, navigate in your web browser to your private repository
on GitHub. It should be available at https://github.com/williams-
cs/cs3311ab02_pwcrack-{USERNAME}. You should see all changes re-
flected in the files that you push. If not, go back and make sure you have
both committed and pushed.

Do not include identifying information in the code that you sub-
mit. We will know that the files are yours because they are in your
git repository. We grade your lab programs anonymously to avoid
bias. In your README.md file, please cite any sources of inspiration or
collaboration (e.g., conversations with classmates). We take the honor
code very seriously, and so should you. Please include the statement "I
am the sole author of the work in this repository." in a com-

ment at the top of your C files.

Bonus: Feedback

I am always looking to improve our labs. For one bonus percentage
point, please submit answers to the following questions using the anony-
mous feedback form for this class:

1. How difficult was this assignment on a scale from 1 to 5 (1 = super

https://williams-cs.github.io/cs331-f21-www/feedback.html
https://williams-cs.github.io/cs331-f21-www/feedback.html

LAB 3: PASSWORD CRACKING

easy, ..., 5 = super hard)? Why?
2. Did this assignment help you to understand password attacks?

3. Is there is one skill/technique that you struggled to develop during
this lab?

4. Your name, for the bonus point (if you want it).

Bonus: Mistakes

Did you find any mistakes in this writeup? If so, add a file called MISTAKES .md
to your GitHub repository and provide a bulleted list of mistakes. Be
sure to explain them in enough detail that I can verify them. For exam-

ple, you might write

* Where it says "bypass the auxiliary sensor" you should have
written "bypass the primary sensor".

* You spelled "college" wrong ("collej").

* A quadrilateral has four edges, not "too many to count" as you
state.

For each mistake I am able to validate, I will award limited bonus
credit, not to exceed 100% of your grade.

65

	Lab 0: Setting up your Raspberry Pi
	Learning Goals
	The Lab Kit
	Step 1: Flash Your SD Card
	Step 2: Connect a Serial Console Adapter to Your Computer
	Step 3: Start a Console Emulator on the Host Computer
	Step 4: Observe the Blinkenlights
	Step 5: Connect a Serial Console Adapter to the Raspberry Pi
	Step 6: Insert microSD Card and Power Up
	Step 7: Do a clean shutdown
	Step 8: Configure Console Dimensions
	Step 9: Configure Wifi
	Step 10: Install Some Software
	Step 11: Have a Little Fun: Network Scanning

	Lab 1: Login Security
	Learning Goals
	Required Reading
	Computing Environment
	Finding Documentation for C Functions
	Starter Code
	The Password Database
	Part 1: login0, a naïve login program
	Part 2: Attacking login0
	Part 3: login1, an improved login program
	Part 4: attack1, a brute force attack on login1
	Part 5: attack2, an even-better login program
	Reflection Questions
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Pseudoterminals
	Terminals
	Pseudo Terminals
	How to Write a Control Program
	Development Tips

	Lab 2: Hashtables in C
	Learning Goals
	Requirements
	Inputs and Outputs
	Starter Code
	How to Start
	Gotchas

	Lab 3: Password Cracking
	Required Reading
	Requirements
	Inputs and Outputs
	Part 1: Dictionary Attack
	Part 2: Trading Time for Space
	Reflection Questions
	Bonus
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Lab 4: Stack Smashing, Part 1
	Learning Goals
	Requirements
	Application code
	Environment set-up
	Step 1: Find the vulnerability
	Step 2: Jump to a different function
	Step 3: Filling a buffer with shellcode and executing it

	Appendix A: ARM Reference
	Register Mnemonics for A32 Calling Convention
	Status Flags
	A32 Calling Convention
	Instruction Mnemonics

	Appendix A: Instructor Notes
	To modify a Raspbian binary image
	To enable serial console in Raspbian
	To configure wireless in Raspbian
	To change the size of a terminal display

