Lab 5: Stack Smashing, Part 1

In this assignment, you will construct and carry out a stack-based buffer overflow attack. A stack overflow attack tar-
gets the integrity of a program’s control flow, which is why it belongs to a class of attacks called “control flow integrity
attacks.” The ultimate purpose of the attack in this lab is to force the program to divulge secret information without
the use of the correct password. Each part of the assignment guides you through systematically building up a buffer
overflow exploit that bypasses the program’s authentication mechanism. In this part of the lab, we use GDB and some
test inputs to systematically probe the program’s vulnerabilities. In Lab 7, we will write code that extracts the secret value.

For each question, be sure to follow the instructions carefully, supplying all of the parts mentioned. Be sure to supply
a Makefile that produces whatever artifacts you submit. Please make sure that your Makefile includes updated all and
clean targets.

Learning Goals

In this lab, you will learn:
e How to debug assembly code using GDB.
e How to analyze a binary for stack overflow vulnerabilities.

e How to deploy stack smashing exploit code.

Required Reading

o Assembly-level debugging with GDB
o Finding a return address on the stack using GDB (video)

o Creating a shellcode file

78

Requirements

Language. In order to carry out the attack you will primarily write as-
sembly code. You may also need to write small utilities in C in order to
prepare your attack. Hand in all of the utility programs you write along
the way.

Common environment. Your code must be developed for and work on
the Raspberry Pi machines we use for class.

Special note about SSH. If you plan to work on your assignment by ssh’ing

to your RPi, please be aware that SSH changes the environment! of your
user’s shell. This means that you will very likely need to alter the offsets
in your attack before you submit your assignment. All attack code must
be checked against the console environment we set up in the first lab. If
you do not understand what I mean, this would be a good question to
ask me!

Stack Overflow and the honor code. You are permitted to refer to Stack
Overflow for help, but you must not under any circumstances copy the
code you see there. If you find a helpful Stack Overflow post, you must
attribute the source of your inspiration in a comment at the appropriate location
of your code. You must also provide the URL of the post. Unattributed
code will be considered an honor code violation.

Instructions for compiling and running. You must supply a file called
BUILDING.md with your submission explaining how to:

e compile your program using your Makefile, and

e how to run your programs on the command line.

Reflection questions. This assignment asks you to answer a few ques-
tions. You must supply the answers to these questions in a PROBLEMS .md
file.

Starter code. For this assignment, your repository includes the program
you need to exploit, some sample attack code, and a Makefile.

1 A shell environment is the set of local
variables and other shell settings,
including tty settings, for your user.
You can view the contents of your
environment by typing env at a shell
prompt. When a program is started,
the entire shell environment is copied
into the memory for the new process.
Because the bottom of the call stack is
placed after the environment, the size of
the environment changes the starting
offset of the shell.

LAB 5: STACK SMASHING, PART 1 79

Application code

You are supplied with a program in source code form, prog. c, however
significant parts of the rest of the program are obscured: you are given
a compiled binary and a header file only. Nevertheless, the function of
the program should be clear.

You should compile the program with the supplied Makefile and try
running it. For demonstration purposes, you should use the following
login and password:

username: W1234567
password: demodemo

Environment set-up

Although variants of this attack are still possible on modern comput-
ers and operating systems, this particular attack is no longer feasible
because of three security countermeasures: stack smashing protection
(aka “stack canaries”), the non-executable stack, and address space lay-
out randomization (ASLR). We need to disable all of these features to
perform our attack.

This lab must be performed using the class Raspberry Pi computer.
Your personal computer has both important architectural differences
from the class hardware and likely incorporates additional countermea-
sures against control flow integrity attacks.

OBl Disabling SSP and NX

Figure 7.1: The idiom canary in a coal
(SSP) and the non-executable stack (NX). It is also much easier to read mie refers to the practice 0¥u5mg

generated assembly when call frame information (CFI) and exception han- canaries to detect hazardous gasses like
carbon monoxide. Due to their small

size and faster metabolism, canaries
flags, but here they are for posterity: are more sensitive to many toxins
than humans. If a canary became ill
or died, it signaled that miners should

Any code you compile using gcc must disable stack smashing protection

dling directives are disabled. The supplied Makefile already has these

-fno-dwarf2-cfi-asm # don't emit CFI immediately evacuate
-fno-asynchronous-unwind-tables # really don't emit CFI

-fno-exceptions # disable exceptions
-fno-delete-null-pointer-checks # don't optimize nulls!

-z execstack # disable NX

-fno-stack-protector # disable SSP

SSP works by inserting a guard value, known as a canary, between

80

the return address and the rest of the stack frame. When the function
epilogue is run, this canary value is compared against the same canary
stored in the program’s read-only DATA segment. If the values are dif-
ferent, the return address has been tampered with, and the program is
terminated by the C runtime.

NX (“no execute”) is a hardware feature now present on all modern

computers. Every virtually-addressed> memory page has an entry in a 2 Recall that virtual memory is an ab-
straction provided by the operating

. . system to provide the illusion to pro-
of a page to a physical address. They enable the operating system to grammers that a program has complete

data structure called a page table. A page table maps the virtual address

translate between virtual memory requests made by a program and the and exclusive access to all of the com-
puter’s memory. In reality, memory is

shared among many programs. Virtual
management unit (MMU). Page tables are maintained by the operating memory dramatically simplifies the
programming of a computer. Without it,

] .] P ., o programmers would have to anticipate
ing the NX bit, which stands for “no execute.” When the NX bit is set when memory might be shared, for any

physical management of memory performed by a hardware memory

system. Other page-related information is stored in a page table, includ-

(== 1), the computer will refuse to execute any instructions found in possible set of programs that might run
. . that ter. A difficult task t
that page. Modern compilers set the NX bit for DATA, stack, and heap ?}?e lezsf,ompu o A T ask fosay

segments, because valid code should reside only in the TEXT segment.
The above set of gcc flags also disables a few things that will compli-
cate stack frames for your program, like exception handler support.

oWl Disabling ASLR

Your operating system also includes a feature called address space layout
randomization (ASLR). ASLR is a security feature that changes the layout
of your program from run to run. In particular, it randomly alters the
starting offsets of the call stack, heap, and library functions. This has
the effect of making it difficult to determine where things like return
addresses are unless an attacker can run a program many times.

On your Raspberry Pi, run:

$ echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

Your machine will prompt you to enter the password for your user.
You can verify that ASLR is off by running:

$ cat /proc/sys/kernel/randomize_va_space

0 means that ASLR is disabled. 1 or 2 means that ASLR is enabled.
The setting you changed above does not persist after reboots. To dis-
able ASLR permanently, run

$ sudo emacs /etc/sysctl.d/0Ol1-disable-aslr.conf

and when in emacs, add the following line:

kernel.randomize_va_space = 0

To test that you configured ASLR correctly, reboot your Raspberry Pi:

$ sudo shutdown -r now

LAB 5: STACK SMASHING, PART 1 81

and when it comes back up, in your terminal, run the same command
we used to check ASLR above:

$ cat /proc/sys/kernel/randomize_va_space

where 0 means that ASLR is off, and 1 or 2 means that ASLR is on.

Shell Environment

Lastly, your shell’s environment may make finding your addresses dif-
ficult, because if the environment changes, the program will be in a dif-
ferent location in memory. Both ssh and gdb load variables into the
environment, so you may discover that when you get your exploit run-
ning in gdb, running the program outside of gdb (and/or ssh) may not
work. When I developed my exploit, I found that the address of the
exploitable buffer in gdb was 64 bytes lower than the address I needed
without gdb. There are a couple ways to address this:

e Adjust your attack’s new return address for use outside gdb so that
you jump to the right place, or

e Add a NOP sled® to the beginning of your buffer and then adjust the 3 A NOP sled is a sequence of valid
instructions that allow an attacker
leeway when trying to jump to the
starting point of attack code. Typically,
a NOP sled is made up of long chains

return address so that both attacks will jump inside the sled.

How did I know how much gdb altered the offset? I temporarily inserted

the following handy function of repeated instructions that cause
no meaningful effect on the state of a
void print_stack_pointer() { computer, like nop or mov r0, r0. For
void* p = NULL; example, supposing that mov r3, sp
printf ("%p", (void*)&p); is the start of attack code, a NOP sled
} might look like:
nop
into prog.c. Generally speaking, your exploit should work on an un- nop
modified prog. c, but you may change it temporarily to figure out how nop
no
to exploit it. Remember to ensure that your exploit works on an unmod- noi
ified prog. c before you hand it in! nop
nop
nop
nop
nop
nop
nop
Step 1: Find the vulnerability nop
nop
The supplied application contains two weaknesses, which together form zg
a vulnerability. The first weakness is that the only thing guarding the nop
nop

program’s sensitive data, obtained by calling the decrypt function, is a 5
mov r3, sp

student_id, which is public knowledge.

Reflection Q1. Identify the second weakness and explain how the two
weaknesses combine to constitute a vulnerability. Be sure to explain, in

82

general terms, how an attacker might exploit this vulnerability. Record
your answer in PROBLEMS . md.

Step 2: Jump to a different function

After identifying the vulnerability, use gdb or simulate the program in
order to find your point of attack. You will need to craft an input that
overwrites a return address left on the stack. The function you should
call is called test2.

Supply your input (which is likely to contain binary characters) in
two forms:

1. asastring of escaped hexadecimal literals in a file called input1.hex,
and

2. inbinary form in a file called input1.

I should be able to run your exploit like this:

$./prog < inputil

Reflection Q2. Crafting an input requires that you answer the following
questions. If you're having trouble with the above, note that the answers
to these questions are a recipe for crafting a buffer overflow exploit. It
will probably help to answer them first!

1. What is the location of the return address stored in the stack frame
for the function you plan to exploit?

2. What is the location of the buffer located that you plan to exploit?

3. How many bytes do you need to write in order to overwrite the return
address?

4. Whatis the address you plan to put in the overwritten return address
slot?

5. What order should your overwritten return address be written?
6. What bytes should you write into the buffer?

7. Since you cannot type in certain bytes, how will you write those bytes
to an attack input file?

8. How does one feed an attack input file into a program?

Record answers to all of the above questions in PROBLEMS . md.

LAB 5: STACK SMASHING, PART 1 83

Reflection Q3. How does your attack work? Answer in detail in PROBLEMS . md.

Step 3: Filling a buffer with shellcode and executing it

Shellcode is attack code that launches a shell.

Your second attack should first fill a buffer with shellcode and then,
after overwriting a function return address, transfer control to the shell-
code in the buffer. To make this step easier, you are supplied with sam-
ple shellcode in assembly form.

You are given two sample shellcode files, shellcode.s and
shellcode-test.s. shellcode.s has been written in such a way as to
allow it to pass through C string-handling functions unmolested. Re-
call that C string functions are sensitive to NULL characters, because in
C, NULL signifies the end of a string. To ensure that a shellcode attack is
successful, no assembly mnemonic may generate an opcode containing
NULL bytes. In other words, the byte 0x00 must never occur in the code.
In Part 2 of this lab, you will learn how to write shellcode and to remove
the NULL bytes yourself.

Unfortunately, one trick shellcode. s utilizes is to modify itself. Were
we to compile shellcode.s and try running it, the self-modification

would segfault.* Therefore, you are also supplied with another, slightly # Recall that program code is stored
in the TEXT segment of memory. TEXT

modified version, called shellcode-test.s. This version cannot be
pages are marked as read-only, so self-

used in a buffer overflow attack, because the self-modification is nec- modifying code will cause the program
essary to make the attack work. However, you can run it independently to abort. This is an important security
feature!

to ensure that you've set up your environment properly.

Finally, it is sometimes difficult to tell when you've successfully started
a shell. To make this crystal clear, this lab comes with a shell wrapper
program called gh that prints "Starting sh!" when it starts up.

Do the following steps:

1. Compile gh

$ make qh

and install it in /bin.

$ sudo mv gh /bin/qh

2. Make sure that gh works when called directly.

$ qh
Starting sh!
$ exit

exit

Typing exit returns to your original shell.

84

3. Compile the shellcode:

$ make shellcode-test

If you've done everything correctly, running shellcode-test should
start gh.

$./shellcode-test
Starting sh!

$ exit

exit

Now that you know shellcode-test.s works, crafting an exploit us-
ing shellcode.s should also work.

1. Compile shellcode.o.

$ make shellcode.o

2. Extract all the machine code from shellcode.o associated with the
main and shell labels.

3. Now, craft an input that exploits the program in the following way:

(a) When the program runs, input is fed into the vulnerable buffer.

(b) That input is made of extracted object code, padded with nop in-
structions where necessary.

(c) That input is crafted so as to ensure that it overwrites the return
address of the function containing the vulnerable buffer.

(d) The new return address that you create points into the buffer you
just overflowed, so that when the function returns, it jumps into
your attack shellcode.

Once you have crafted an exploit, you should be able to run it like
this:

$./prog < input2
Be sure to supply input2 in two forms:

1. as astring of escaped hexadecimal literals in a file called input2.hex,
and

2. in binary form in a file called input2.

Reflection Q4. How does your attack work? Answer in detail in PROBLEMS . md.

LAB 5: STACK SMASHING, PART 1 85

Submitting Your Lab

As you complete portions of this lab, you should commit your changes
and push them. Commit early and often. When the deadline arrives,
we will retrieve the latest version of your code. If you are confident that
you are done, please use the phrase "Lab Submission" as the commit
message for your final commit. If you later decide that you have more
edits to make, it is OK. We will look at the latest commit before the dead-
line.

Be sure to push your changes to GitHub. To verify your changes
on GitHub, navigate in your web browser to your private repository
on GitHub. It should be available at https://github.com/williams-
cs/cs3311ab05-07_stack_smashing-{USERNAME}. You should see all
changes reflected in the files that you push. If not, go back and make
sure you have both committed and pushed.

Do not include identifying information in the code that you sub-
mit. We will know that the files are yours because they are in your
git repository. We grade your lab programs anonymously to avoid
bias. In your README.md file, please cite any sources of inspiration or
collaboration (e.g., conversations with classmates). We take the honor
code very seriously, and so should you. Please include the statement "I
am the sole author of the work in this repository." in a com-
ment at the top of your C files.

Bonus: Feedback

I am always looking to improve our labs. For one bonus percentage
point, please submit answers to the following questions using the anony-
mous feedback form for this class:

1. How difficult was this assignment on a scale from 1 to 5 (1 = super
easy, ..., 5 = super hard)? Why?

2. Did this assignment help you to understand buffer overflow attacks?

3. Is there is one skill/technique that you struggled to develop during
this lab?

4. Your name, for the bonus point (if you want it).

https://williams-cs.github.io/cs331-f21-www/feedback.html
https://williams-cs.github.io/cs331-f21-www/feedback.html

86

Bonus: Mistakes

Did you find any mistakes in this writeup? If so, add a file called MISTAKES .md
to your GitHub repository and provide a bulleted list of mistakes. Be
sure to explain them in enough detail that I can verify them. For exam-
ple, you might write
* Where it says "bypass the auxiliary sensor" you should have
written "bypass the primary sensor".
* You spelled "college" wrong ("collej").

* A quadrilateral has four edges, not "too many to count" as you
state.

For each mistake I am able to validate, I will award limited bonus
credit, not to exceed 100% of your grade.

	Lab 0: Setting up your Raspberry Pi
	Learning Goals
	The Lab Kit
	Step 1: Flash Your SD Card
	Step 2: Connect a Serial Console Adapter to Your Computer
	Step 3: Start a Console Emulator on the Host Computer
	Step 4: Observe the Blinkenlights
	Step 5: Connect a Serial Console Adapter to the Raspberry Pi
	Step 6: Insert microSD Card and Power Up
	Step 7: Do a clean shutdown
	Step 8: Configure Console Dimensions
	Step 9: Configure Wifi
	Step 10: Install Some Software
	Step 11: Have a Little Fun: Network Scanning

	Lab 1: Login Security
	Learning Goals
	Required Reading
	Computing Environment
	Finding Documentation for C Functions
	Starter Code
	The Password Database
	Part 1: login0, a naïve login program
	Part 2: Attacking login0
	Part 3: login1, an improved login program
	Part 4: attack1, a brute force attack on login1
	Part 5: login2, an even-better login program
	Reflection Questions
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Pseudoterminals
	Terminals
	Pseudo Terminals
	How to Write a Control Program
	Development Tips

	Lab 2: Hashtables in C
	Learning Goals
	Requirements
	Inputs and Outputs
	Starter Code
	How to Start
	Gotchas

	Lab 3: Password Cracking
	Required Reading
	Requirements
	Inputs and Outputs
	Part 1: Dictionary Attack
	Part 2: Trading Time for Space
	Reflection Questions
	Bonus
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Lab 4: The A32 Calling Convention
	Learning Goals
	Requirements
	Starter Code
	Compilation
	Part 1: What does each step do?
	Part 2: Simulate a program on paper
	Part 3: Did you get it right?
	Part 4: Where are the following sections?
	Part 5: Modify the program

	Lab 5: Stack Smashing, Part 1
	Learning Goals
	Required Reading
	Requirements
	Application code
	Environment set-up
	Step 1: Find the vulnerability
	Step 2: Jump to a different function
	Step 3: Filling a buffer with shellcode and executing it
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Assembly-Level Debugging with gdb
	Disassembly mode
	Running programs
	Running programs that read from STDIN
	Setting assembly breakpoints
	Inspecting registers
	Stepping, stepping over, and continuing
	Printing values
	Inspecting values

	Appendix A: ARM Reference
	Register Mnemonics for A32 Calling Convention
	Status Flags
	A32 Calling Convention
	Instruction Mnemonics

	Appendix A: Instructor Notes
	To modify a Raspbian binary image
	To enable serial console in Raspbian
	To configure wireless in Raspbian
	To change the size of a terminal display

