__ 3]
Lab 6: Removing NULL bytes

This short assignment will give you a little practice removing NULL bytes from an assembly program. NULL bytes will
prevent shellcode from being able to pass unmolested through C string functions. Therefore, we remove them to make our
attacks more robust.

Learning Goals

In this lab, you will practice:

e producing assembly code from C code;

e producing object code from assembly code;
e examining object code for NULL bytes; and

e searching for alternative assembly instructions that do not produce
NULL bytes.

Requirements

Collaboration. This is an ungraded assignment. You are encouraged to
work with a partner.

Platform. This assignment must be completed on your Raspberry Pi, as
itis specific to the ARMv6 architecture, the Linux operating system, and
the C programming language.

88

Starter Code

Type the following programs into a text editor. We start with a simple
program called code.c.

#include <stdio.h>

int main() {
int x = 0;
X += 72
putchar (x);
x += 33;
putchar (x);
x -= 72;
putchar (x);
x -= 23;
putchar (x);
return O;

Compile the above code in the usual way and run it. What does it do?

Part 1: Producing assembly

We can produce assembly for this code with the following command.

$ gcc -S code.c

You should see the file code.s appear. In this lab, you are going to
manipulate code. s until all of the NULL bytes go away:.

Part 2: Compiling assembly

There are two ways to compile assembly, depending on whether you
want to make a runnable program or if you just want to view the bytes in
your functions.

To make a runnable program, run

$ gcc -o code code.s

You should be able to run it like

$./code

Because runnable code must link against the C runtime, there is a lot
of extra information in code’s object code. To exclude this extraneous
information, so that you can focus on your own code, run the following

instead.

$ gcc -c code.s

which will create a file called code . 0. Observe that we cannot run code . o
even though it has a main method because it does not include the C run-

time library.

we have to mark code.o as
$ chmod +x code.o

$./code.o

-bash: ./code.o:

"ezecutable" first

cannot execute binary file:

Part 3: Viewing object code to look for NULLs

To view the object code in code. o, run

$ objdump -d code.o

which gives us

code.o:

Disassembly of section

file format elf32-littlearm

00000000 <main>:

0:

4:

8:

c:
10:
14:
18:
lc:
20:
24:
28:
2c:
30:
34:
38:
3c:
40:
44:
48:
4c:
50:
54:
58:
bc:
60:

e92d4800
e28db004
e24dd008
e3a03000
e50b3008
e51b3008
e28330438
e50b3008
e51b0008
ebfffffe
e51b3008
e2833021
e50b3008
e51b0008
ebfffffe
e51b3008
e2433048
e50b3008
e51b0008
ebfffffe
e51b3008
e2433017
e50b3008
e51b0008
ebfffffe

.text:

push
add
sub

str
ldr
add
str
ldr
bl

ldr
add
str
ldr
bl

ldr
sub
str
ldr
bl

ldr
sub
str
ldr
bl

{fp, 1r}
fp, sp, #4
sp, sp, #8
r3, #0

r3, [fp, #-8]
r3, [fp, #-8]
r3, r3, #72
r3, [fp, #-8]
r0, [fp, #-8]
0 <putchar>
r3, [fp, #-8]
r3, r3, #33
r3, [fp, #-8]
ro, [fp, #-8]
0 <putchar>
r3, [fp, #-8]
r3, r3, #72
r3, [fp, #-8]
r0, [fp, #-8]
0 <putchar>
r3, [fp, #-8]
r3, r3, #23
r3, [fp, #-8]
ro, [fp, #-8]
0 <putchar>

’

’

’

Exec format error

0z48

0z21

0z48

LAB 6: REMOVING NULL BYTES

89

90

64 : e3a03000 mov r3, #0

68: e€1a00003 mov r0, r3

6c: e24bd004 sub sp, fp, #4
70: e8bd8800 pop {fp, pc}

Now we can look for NULL bytes. Let’s focus on the first instruction:

0: €92d4800 push {fp, 1r}

Recall that objdump “helpfully” attempts to interpret this instruction
as an integer word, so it displays the bytes in a rearranged order. Since
this word really is an instruction, the rearrangement isn't actually help-
ful. We simply need to remember to reverse the bytes ourselves to un-
derstand their true order in memory. Therefore, 0xe92d4800 really is
stored as 00 48 2d e9 on disk. Do you see the NULL byte? It’s the 00 at
the beginning of the word. How do we get rid of it?

Part 4: Replacing instructions

This instruction, as you probably recognize, is a part of the main func-
tion’s preamble. The first question to ask yourself is: do I need to keep
the preamble? Under certain circumstances, one way to get rid of NULL
bytes is just to eliminate the instructions that produce them. However,
here we can see that main calls another function, putchar. Like all C

functions, putchar expects that the stack disciplinel be maintained. So ! In other words, that the program
maintains the invariant that the call

can we manipulate push instead?
P P stack is always valid.

Indeed we can. While it is important in maintaining the stack dis-
cipline that £fp and 1r be pushed to the stack, we can, of course, push
other things as well. For example, push {r1, fp, 1lr} pushesrl tothe
call stack. Happily, when viewed with objdump, push {r1, fp, 1r}
yields the bytes:

0: €92d4802 push {r1, fp, 1lr}

If we're pushing more, we also need to pop more at the end to make
sure that fp and pc are restored correctly.

70: e8bd8802 pop {r1, fp, pc}

That also looks good—no NULL bytes. But we did introduce a tiny
wrinkle, didn't we? Observe that this program repeatedly loads and
stores values from fp, #-8. Is that a problem?

LAB 6: REMOVING NULL BYTES 91

Part 5: Running your code

It’s probably a good idea to make tiny changes to your code and see if
they work. Remember that you can compile and run your code like so:

$ gcc -o code code.s
$./code

If you see the same output as the binary produced when you compile
code.c, you're on the right track. Also, don’t forget that you can always
use gdb to help you out when your confused about what’s happening.

IEX] Bonus: Replace symbols

The program we’ve been tinkering with is not intended to be used in
shellcode. But we could use it as shellcode, couldn’t we? Except that,
since our program is compiled and linked separately from the vulnerable
program, C will not correctly resolve function names (“symbols”) to
their correct addresses in the vulnerable program. So to make our attack
work, we need to find all of the symbols and replace them with their
correct addresses in the vulnerable program.

Assume that putchar is located at 0x00010300 in the vulnerable pro-
gram. Can you replace putchar with this address instead?

Tips

Recall that Lab 7 includes many NULL-removal tips. Your starter code for
lab 5 also includes some sample shellcode, which should give you some
ideas. And, of course, you should refer back to the ARM Assembly Guide
for help. Finally, you are welcome to use the Internet, particular Stack
Overflow, for this assignment if you think it would be helpful.

	Lab 0: Setting up your Raspberry Pi
	Learning Goals
	The Lab Kit
	Step 1: Flash Your SD Card
	Step 2: Connect a Serial Console Adapter to Your Computer
	Step 3: Start a Console Emulator on the Host Computer
	Step 4: Observe the Blinkenlights
	Step 5: Connect a Serial Console Adapter to the Raspberry Pi
	Step 6: Insert microSD Card and Power Up
	Step 7: Do a clean shutdown
	Step 8: Configure Console Dimensions
	Step 9: Configure Wifi
	Step 10: Install Some Software
	Step 11: Have a Little Fun: Network Scanning

	Lab 1: Login Security
	Learning Goals
	Required Reading
	Computing Environment
	Finding Documentation for C Functions
	Starter Code
	The Password Database
	Part 1: login0, a naïve login program
	Part 2: Attacking login0
	Part 3: login1, an improved login program
	Part 4: attack1, a brute force attack on login1
	Part 5: login2, an even-better login program
	Reflection Questions
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Pseudoterminals
	Terminals
	Pseudo Terminals
	How to Write a Control Program
	Development Tips

	Lab 2: Hashtables in C
	Learning Goals
	Requirements
	Inputs and Outputs
	Starter Code
	How to Start
	Gotchas

	Lab 3: Password Cracking
	Required Reading
	Requirements
	Inputs and Outputs
	Part 1: Dictionary Attack
	Part 2: Trading Time for Space
	Reflection Questions
	Bonus
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Lab 4: The A32 Calling Convention
	Learning Goals
	Requirements
	Starter Code
	Compilation
	Part 1: What does each step do?
	Part 2: Simulate a program on paper
	Part 3: Did you get it right?
	Part 4: Where are the following sections?
	Part 5: Modify the program

	Lab 5: Stack Smashing, Part 1
	Learning Goals
	Required Reading
	Requirements
	Application code
	Environment set-up
	Step 1: Find the vulnerability
	Step 2: Jump to a different function
	Step 3: Filling a buffer with shellcode and executing it
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Lab 6: Removing NULL bytes
	Learning Goals
	Requirements
	Starter Code
	Part 1: Producing assembly
	Part 2: Compiling assembly
	Part 3: Viewing object code to look for NULLs
	Part 4: Replacing instructions
	Part 5: Running your code
	Bonus: Replace symbols
	Tips

	Lab 7: Stack Smashing, Part 2
	Learning Goals
	Requirements
	Lab 5
	Step 1: Jump to a function that takes input
	Step 2: Remove NULL bytes from input3
	Step 3: Call the decrypt function
	Step 4: Call the decrypt function with your student ID
	Submitting Your Lab
	Bonus: Extra Challenges
	Bonus: Feedback
	Bonus: Mistakes

	Assembly-Level Debugging with gdb
	Disassembly mode
	Running programs
	Running programs that read from STDIN
	Setting assembly breakpoints
	Inspecting registers
	Stepping, stepping over, and continuing
	Printing values
	Inspecting values

	Appendix A: ARM Reference
	Register Mnemonics for A32 Calling Convention
	Status Flags
	A32 Calling Convention
	Instruction Mnemonics

	Appendix A: Instructor Notes
	To modify a Raspbian binary image
	To enable serial console in Raspbian
	To configure wireless in Raspbian
	To change the size of a terminal display

