__ 9]
Lab 7: Stack Smashing, Part 2

In this assignment, you will continue constructing a stack-based buffer overflow attack. Here, we carry out the primary
aim of the attack: extracting a secret value. To do this successfully, you will need to write your own attack code in as-
sembly, tying together existing functions to exfiltrate a value without entering in a password. Although it is not strictly
required for this attack, we will also explore techniques to make your attacks work against a broader set of C string-handling
functions.

For each question, be sure to follow the instructions carefully, supplying all of the parts mentioned. You are strongly en-
couraged to supply a Makefile that produces whatever artifacts you submit. Please make sure that your Makefile includes
updated all and clean targets.

Learning Goals

In this lab, you will learn:

e How to use the analysis skills from Lab 5 to plan a novel attack.
e How to write that attack in ARM assembly.

e How to make your attack robust to string-handling functions.

94

Requirements

Language. In order to carry out the attack you will primarily write as-
sembly code. You may also need to write small utilities in C in order to
prepare your attack. Hand in all of the utility programs you write along
the way.

Common environment. Your code must be developed for and work on
the Raspberry Pi machines we use for class.

Stack Overflow and the honor code. You are permitted to refer to Stack
Overflow for help, but you must not under any circumstances copy the
code you see there. If you find a helpful Stack Overflow post, you must
attribute the source of your inspiration in a comment at the appropriate location
of your code. You must also provide the URL of the post. Unattributed
code will be considered an honor code violation.

Reflection questions. This assignment asks you to answer a few ques-
tions. You must supply the answers to these questions in a PROBLEMS .md
file.

Starter code. For this assighment, your repository includes the program
you need to exploit and a Makefile.

Lab5

This lab builds on the skills you learned while working on Lab 5. If you
want to revisit your Lab 5 solution, you are welcome to do so. Simply
edit your code and push—no need to tell me. I will grade Labs 5 and 7
all together.

Step 1: Jump to a function that takes input

You can find the address of an arbitrary
Your first attack should call the test function, which returns a char *. function in GDB using the disas func-
Pass this returned char * to the test3 function, which prints it out. tion. For example, (gdb) disas test
will jump the gdbtui display to the
location of the test function.

LAB 7: STACK SMASHING, PART 2 95

Note that since you are doing something more sophisticated than sim-
ply jumping to an arbitrary address, you will need to utilize an argu-
ment as in the previous attack. Again, you will exploit this program by
crafting an input.

This input will likely rely on custom shellcode, written by you. There
are two approaches to writing shellcode:

e Write a C program and generate assembly to use as inspiration.

e Hand-craft assembly.

In both cases, you will likely need to refine your shellcode by hand.
Aside from choosing instructions carefully, there are some techniques
that make life much easier:

e Move the stack base to a safe location so that it does not interfere
with your carefully-crafted shellcode. Locations at a lower address
than the target buffer are probably safe (i.e., “above” the stack). Re-
member that that functions you call expect that the C call stack exists
and functions correctly.

e Use the .asciz assembler directive to insert a string literal directly
into code. Then use the adr instruction to load the address of the
label into an instruction. For example:

adr r0O, thing
thing:
.asciz "hello world!"
e Because all ARM instructions are exactly 32 bits wide, this makes uti-

lizing full 32-bit numbers cumbersome. Most ARM instructions can
only accommodate 8-bitimmediate values. Here are some workarounds:

— Use the .word assembler directive with adr and 1dr to put the
value into a register. For example:

adr r0O, a_number
ldr r1, [r0]

a_number:
.word 12345678
— Use addition and bit-shifting to create a number. For example, to
obtain Oxabce from Oxab and Oxcd, you can do:

mov r0, Oxab
1sl r1, r0, #2
mov r0, Oxcd
orr r0, r0, ril

— The ror instruction is a special mov instruction that lets you move
and rotate an instruction all in one step. See the ARM KEIL man-
ual for details.

96

e The bl instruction cannot jump to an address stored in a register,
which is inconvenient; it only works with immediates. Fortunately,
blx can take a register operand, and like bl, it also saves the return
address in the 1r register.

Be sure to supply:

1. your input as a string of escaped hexadecimal literals in a file called
input3.hex;

2. your input in binary in a file called input3;
3. your shellcode as an assembly program called input3.s; and

4. an explanation how your attack works in the PROBLEMS . md file.

You are encouraged, but not required, to supply a Makefile that
builds the above artifacts. Specifically, consider having targets for input3.o,
input3.hex, and input3 using a Makefile. Doing so keeps your code
organized and it makes it easy for me to follow your train of thought.

Note: Be sure to put your work in the part2 folder.

Step 2: Remove NULL bytes from input3

Although removing NULL bytes is not strictly required to make this at-
tack work, for full credit, you will need to ensure you have removed
NULLs from your input. Removing NULL bytes ensures that if your at-
tack input is subsequently handled by a C string function that checks
for the presence of NULL bytes that it passes through those functions in
its entirety.

You can check for the presence of NULL bytes in your attack binary us-
ing the objump and hexdump tools. NULL bytes in assembled code comes
from two different sources:

1. Instructions themselves. For example, the program eor.s

main:
eor r0, r0

produces NULL bytes:
$ objdump -d eor.o

eor.o: file format elf32-littlearm
Disassembly of section .text:

00000000 <main>:
0: e0200000 eor r0, r0, r0

LAB 7: STACK SMASHING, PART 2 97

Observe that this instruction is encoded on disk as 00 00 20 eO.

2. Literal values. For example, the word 0xff is actually represented on
disk as the little-endian word ££ 00 00 00.

Aleph One’s paper, “Smashing the Stack for Fun and Profit,” gives
some background on NULL-removal. There are many approaches to re-
moving them. In general, these approaches call for some creativity. Try
to think of this problem as a fun puzzle.

e cor aregister with itself to obtain zero values.

e Assemble values using multiple instructions. For example, logical
shifting to set high or low bits.

e Storing “proximate” numbers using .word, which you then modify
at runtime (e.g., using shifts, addition, etc). For example, the byte
0x01 is “close” to the byte 0x00.

e .asciz is handy precisely because it automatically NULL-terminates
strings for you. Unfortunately that runs counter to our goal of NULL
byte removal. Instead, use .ascii, which does not NULL-terminate. If
you plan to give a string created by .ascii to a C function, remember
that it must be NULL-terminated. You will have to NULL-terminate it at
runtime.

The shellcode-test.s and shellcode.s programs distributed with
Lab 5 utilize all of these tricks. See that code for examples.

Be sure to supply:

1. your input as a string of escaped hexadecimal literals in a file called
input4.hex;

2. your input in binary in a file called input4;

3. your shellcode as an assembly program called input4.s; and

4. an explanation how your attack works in the PROBLEMS . md file.

Asbefore, you are encouraged, but not required, to supply a Makefile
that builds the above artifacts.

Step 3: Call the decrypt function

Your second attack should call the decrypt function with an arbitrary
input that is not a valid student ID. This attack will be similar to the
previous attack in that you will need to utilize an argument in order to

98

feed an input to the decrypt function. Observe! that decrypt returns ! By looking in enc.h.
a char *. To print it, you will need to call some kind of print function,
like in Step 1.

Again, you will exploit this program by crafting an input. Once ex-

ploited, you will trigger a fault handler? in the program that will return 2 The handler prints an error message
backward. The purpose of this handler

. . is to let you know when you’re on the
Your attack code should be supplied with NULL bytes removed. How- right track.

a pointer to one of a set of strings.

ever, you are encouraged to start with an ordinary assembly program
containing NULL bytes if you are struggling with that step.

1. your input as a string of escaped hexadecimal literals in a file called
inputb.hex;

2. your input in binary in a file called input5;
3. your shellcode as an assembly program called input5.s;

4. supply one of the outputs of the above code in your PROBLEMS . md file;
and finally

5. provide an explanation how your attack works in the PROBLEMS .md
file.

Asbefore, you are encouraged, but not required, to supply a Makefile
that builds the above artifacts.

Step 4: Call the decrypt function with your student ID

Your final attack should call the decrypt function with your own Williams
ID. The program will return a value that is unique to your ID.

Your attack code should be supplied with NULL bytes removed. How-
ever, you are encouraged to start with an ordinary assembly program
containing NULL bytes if you are struggling with that step.

1. your input as a string of escaped hexadecimal literals in a file called
input6.hex;

2. your input in binary in a file called input6;
3. your shellcode as an assembly program called input6.s;

4. supply the URL given in the output of your code in your PROBLEMS . md
file; and finally

5. an explanation how your attack works in the PROBLEMS . md file.

Asbefore, you are encouraged, but not required, to supply a Makefile
that builds the above artifacts.

LAB 7: STACK SMASHING, PART 2 99

X Submitting Your Lab

As you complete portions of this lab, you should commit your changes
and push them. Commit early and often. When the deadline arrives,
we will retrieve the latest version of your code. If you are confident that
you are done, please use the phrase "Lab Submission" as the commit
message for your final commit. If you later decide that you have more
edits to make, it is OK. We will look at the latest commit before the dead-
line.

Be sure to push your changes to GitHub. To verify your changes
on GitHub, navigate in your web browser to your private repository
on GitHub. It should be available at https://github.com/williams-
cs/cs3311ab05-07_stack_smashing-{USERNAME}. You should see all
changes reflected in the files that you push. If not, go back and make
sure you have both committed and pushed.

Do not include identifying information in the code that you sub-
mit. We will know that the files are yours because they are in your
git repository. We grade your lab programs anonymously to avoid
bias. In your README.md file, please cite any sources of inspiration or
collaboration (e.g., conversations with classmates). We take the honor
code very seriously, and so should you. Please include the statement "I
am the sole author of the work in this repository." in a com-

ment at the top of your C files.

IEE] Bonus: Extra Challenges

There are two possible extra challenges.

1. The first is to carry out this attack in such a way that it does not pro-
duce a segmentation fault. Doing so will require that you think care-
fully about how the attack should modify (and possibly preserve)
parts of the stack.

2. The second bonus possibility is to decrypt all of the stored values.

In either case, be sure to explain how your attack works in the PROBLEMS . md " file.

100

Bonus: Feedback

I am always looking to improve our labs. For one bonus percentage
point, please submit answers to the following questions using the anony-
mous feedback form for this class:

1. How difficult was this assignment on a scale from 1 to 5 (1 = super
easy, ..., 5 = super hard)? Why?

2. Did this assignment help you to understand buffer overflow attacks?

3. Is there is one skill/technique that you struggled to develop during
this lab?

4. Your name, for the bonus point (if you want it).

Bonus: Mistakes

Did you find any mistakes in this writeup? If so, add a file called MISTAKES .md
to your GitHub repository and provide a bulleted list of mistakes. Be
sure to explain them in enough detail that I can verify them. For exam-

ple, you might write

* Where it says "bypass the auxiliary sensor" you should have
written "bypass the primary sensor".
* You spelled "college" wrong ("collej").
* A quadrilateral has four edges, not "too many to count" as you
state.

For each mistake I am able to validate, I will award limited bonus
credit, not to exceed 100% of your grade.

https://williams-cs.github.io/cs331-f21-www/feedback.html
https://williams-cs.github.io/cs331-f21-www/feedback.html

	Lab 0: Setting up your Raspberry Pi
	Learning Goals
	The Lab Kit
	Step 1: Flash Your SD Card
	Step 2: Connect a Serial Console Adapter to Your Computer
	Step 3: Start a Console Emulator on the Host Computer
	Step 4: Observe the Blinkenlights
	Step 5: Connect a Serial Console Adapter to the Raspberry Pi
	Step 6: Insert microSD Card and Power Up
	Step 7: Do a clean shutdown
	Step 8: Configure Console Dimensions
	Step 9: Configure Wifi
	Step 10: Install Some Software
	Step 11: Have a Little Fun: Network Scanning

	Lab 1: Login Security
	Learning Goals
	Required Reading
	Computing Environment
	Finding Documentation for C Functions
	Starter Code
	The Password Database
	Part 1: login0, a naïve login program
	Part 2: Attacking login0
	Part 3: login1, an improved login program
	Part 4: attack1, a brute force attack on login1
	Part 5: login2, an even-better login program
	Reflection Questions
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Pseudoterminals
	Terminals
	Pseudo Terminals
	How to Write a Control Program
	Development Tips

	Lab 2: Hashtables in C
	Learning Goals
	Requirements
	Inputs and Outputs
	Starter Code
	How to Start
	Gotchas

	Lab 3: Password Cracking
	Required Reading
	Requirements
	Inputs and Outputs
	Part 1: Dictionary Attack
	Part 2: Trading Time for Space
	Reflection Questions
	Bonus
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Lab 4: The A32 Calling Convention
	Learning Goals
	Requirements
	Starter Code
	Compilation
	Part 1: What does each step do?
	Part 2: Simulate a program on paper
	Part 3: Did you get it right?
	Part 4: Where are the following sections?
	Part 5: Modify the program

	Lab 5: Stack Smashing, Part 1
	Learning Goals
	Required Reading
	Requirements
	Application code
	Environment set-up
	Step 1: Find the vulnerability
	Step 2: Jump to a different function
	Step 3: Filling a buffer with shellcode and executing it
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Lab 6: Removing NULL bytes
	Learning Goals
	Requirements
	Starter Code
	Part 1: Producing assembly
	Part 2: Compiling assembly
	Part 3: Viewing object code to look for NULLs
	Part 4: Replacing instructions
	Part 5: Running your code
	Bonus: Replace symbols
	Tips

	Lab 7: Stack Smashing, Part 2
	Learning Goals
	Requirements
	Lab 5
	Step 1: Jump to a function that takes input
	Step 2: Remove NULL bytes from input3
	Step 3: Call the decrypt function
	Step 4: Call the decrypt function with your student ID
	Submitting Your Lab
	Bonus: Extra Challenges
	Bonus: Feedback
	Bonus: Mistakes

	Assembly-Level Debugging with gdb
	Disassembly mode
	Running programs
	Running programs that read from STDIN
	Setting assembly breakpoints
	Inspecting registers
	Stepping, stepping over, and continuing
	Printing values
	Inspecting values

	Appendix A: ARM Reference
	Register Mnemonics for A32 Calling Convention
	Status Flags
	A32 Calling Convention
	Instruction Mnemonics

	Appendix A: Instructor Notes
	To modify a Raspbian binary image
	To enable serial console in Raspbian
	To configure wireless in Raspbian
	To change the size of a terminal display

