
CSCI 331:
Introduction to Computer Security

Instructor: Dan Barowy

Lecture 6: Password Cracking, part 1

Topics

Crypto refresher

Resubmissions

Password database attacks

Lab 1—what did we learn?

Lab 2

Your to-dos

1. Reading response (Oechslin) due tonight.
2. Project part 1 due Sunday 9/29.
3. Lab 2 due Sunday 10/13.

Lab 1—what did we learn?

Office hours:
Mondays 3-5pm (TCL 307)

Thursday 3-5pm (TCL 312 UNIX lab)
Fridays 4-6pm (TCL 312 UNIX lab)

Resubmissions

Cryptography refresher

Encryption is the process of encoding a message so that it can be read
only by the sender and the intended recipient.

• A plaintext 𝑝 is the original, unobfuscated data. This is information you want to

protect.

• A ciphertext 𝑐 is encoded, or encrypted, data.

• A cipher 𝑓 is an algorithm that converts plaintext to cipertext. We sometimes call
this function an encryption function.

✴More formally, a cipher is a function from plaintext to ciphertext, 𝑓(𝑝)=𝑐. The
properties of this function determine what kind of encryption scheme is being
used.

• A sender is the person (or entity) who enciphers or encrypts a message, i.e., the
party that converts the plaintext into cipertext. 𝑓(𝑝)=𝑐

• A receiver is the person (or entity) who deciphers or decrypts a message, i.e., the
party that converts the ciphertext back into plaintext. 𝑓-1(c)=p

See the reading Why Stolen Password Databases are a Problem for a
little more nuance.

Lab 2

Password database attacks

• Random guessing attack
• Enumeration attack
• Dictionary attack
• Precomputed hash chain attack
• Rainbow table attack

Scenario

Entire password database leaked (bug;
misconfiguration; theft by authorized personnel).

We keep passwords in hashed form.

username_1,password_1
username_2,password_2
...
username_n,password_n

username_1,pwhash_1
username_2,pwhash_2
...
username_n,pwhash_n

Hashes are not invertible.

Random guessing

for each entry in database:
 not_found = true
 // try until found
 while not_found:
 // random plaintext
 p = randPassword()
 // create ciphertext
 c = hash(p)
 // compare
 if c = entry.pwhash:
 print entry.pwhash, p
 not_found = false

username_1,password_1
username_2,password_2
...
username_n,password_n

Complexity?

Random guessing: complexity (one pw)

username_1,password_1
username_2,password_2
...
username_n,password_n

m = # of possible passwords

p = probability that random 
 guess is correct

 = 1/m

E[X] = 1/p

= m

X = # guesses until success

(binomial experiment)

O(m) average per pw O(mn) average for all pw

Enumeration: slightly better

for each entry in database:
 i = 0
 not_found = true
 // try until found or out of pt
 while not_found && i < NUM_PT:
 // gen ith possible plaintext
 p = genPassword(i)
 // create ciphertext
 c = hash(p)
 // compare
 if c = entry.pwhash:
 print entry.pwhash, p
 not_found = false
 i++

username_1,password_1
username_2,password_2
...
username_n,password_n

Complexity?

Enumeration: complexity

username_1,password_1
username_2,password_2
...
username_n,password_n

O(m/2)

m = # of possible passwords

Average time to find one pw:

Average time to find all pw:

O(n x m/2)

A dictionary attack is a form of brute force attack
technique for recovering passphrases by systematically
trying all likely possibilities, such as words in a dictionary.

username_1,password_1
username_2,password_2
...
username_n,password_n

pwhash_1,password_1
pwhash_2,password_2
...
pwhash_n,password_n

Dictionary attack

Critically, a dictionary attack only tries each possibility
once. It trades space for time.

Dictionary: much better

while i < NUM_PT:
 // gen ith possible plaintext
 p = genPassword(i)
 // create ciphertext
 c = hash(p)
 // save
 cracked_db[c] = p

pwhash_1,password_1
pwhash_2,password_2
...
pwhash_n,password_n

Complexity?

Later:

Ahead of time:

for each entry in database:
 print cracked_db[entry.pwhash]

Dictionary attack: complexity

pwhash_1,password_1
pwhash_2,password_2
...
pwhash_n,password_n

O(m)

m = # of possible passwords

Time to compute dictionary:

Time to lookup one pw:
O(log m)

Time to lookup all pws:

O(n log m)

Space needed:

O(m)

Activity: How much space?
It depends on the number of possible passwords.

Password scheme:
• Uppercase letters and numbers, except O and I.
• Up to 8 digits

How many passwords are there?

Activity: How much space?

m = # of passwords

=

≈ 1.8 trillion passwords

Suppose per-pw storage is always 16 bytes.
(8 bytes for cipertext, 8 bytes for plaintext)

16 x (1.8 x 1012) bytes

≈ 26 terabytes

Is this a feasible attack?

https://www.amazon.com/Seagate-256MB-3-5-Inch-Enterprise-ST14000NM0018/dp/B07RQZJ347

Is this a feasible attack?

Time?

(1.8 x 1012) / 106 ≈ (1.8 x 106) seconds

space: ≈ 26 terabytes

This is definitely feasible!

Suppose I can generate 1 million pw/sec

≈ 21 days with one computer.

Precomputed hash chains

pwhash_1,pwhash_k
pwhash_k,pwhash_2k
...

A PCHC attack is a form of brute force attack technique
for recovering passphrases by systematically trying all
likely possibilities, such as words in a dictionary.

Critically, a PCHC attack only tries each possibility once. It
trades space for time, but it compresses the database.

Thought experiment

Suppose we have:

𝑓(𝑝)=𝑐, a cipher that maps plaintexts to ciphertexts; in this

case, a hash function.

Because 𝑓 is a hash function, there is no inverse

function such that 𝑓−1(𝑓(𝑝))=𝑝.

𝑟(𝑐)=𝑝, that maps cipertexts to plaintexts, called a

reducer.

A reducer is not the inverse of the hash!

Thought experiment

pm

cm

hash

plaintexts

ciphertexts

reduce

pm-1

cm-1

hash

Suppose 𝑟(𝑐𝑖) = 𝑝𝑖−1 if 𝑖>1 otherwise 𝑝𝑚

c1

reduce

reduce hash
…

Suppose f(𝑝𝑖) = 𝑐𝑖

Thought experiment

pm

cm

hash

plaintexts

ciphertexts

reduce

pm-1

cm-1

hash

Such a scheme (a hash chain) lets us generate all
plaintexts (and hashes) from a seed plaintext.

c1

reduce

reduce hash
…

Only need to save the seed. Drawbacks?

Recap & Next Class

Today we learned:

Next class:

PCHC algorithm

Trading space for time

Password attacks

Password attack complexity

