CSCI 331:
Introduction to Computer Security

Lecture 2: C Review

Instructor: Dan Barowy
Williams

Topics
Drop/add deadline: Friday, 17th of September
More about grades
Anonymous feedback
C review

(for more review, see lectures page on www)

Quiz

1.

Grades

Purpose:
to reduce your stress level about grades, and

2. to make feedback actionable.

Grading Grading

' TRADITIONAL A’ STANDARDS-BASED

GRADING SYSTEM L) SYSTEM

-

Final project: 20% A 90-100% 4 Proficient on all standards
II\J/IIdtCI'm il)ia{)n: g’gz) B > 80% and < 90% 3 Proficient on most standards

rograms/Labs: o »

Proficient on half of the

Writing assignments: 20% C =70%and <80% 2 standards
Attendance and class discussion: 10% D > 60% and < 70% 4 Proficient on less than half of

the standards

F < 60% 0 Missing

These aren’t supposed to line up.

Grading Grading

STANDARDS-BASED

SYSTEM pe=
L]
//

4 Proficient on all standards 100% .
3 Proficient on most standards 88%

Proficient on half of the °
2 standards 74%
1 Proficient on less than half of 48%

the standards

0 Missing 0

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6

Here are the “point conversions” Here are the “point conversions”

Grade spreadsheet

Grading

Final project: 20%
Midterm exam: 20%
Programs/Labs: 30%
Writing assignments: 20%
Attendance and class discussion: 10%
N YT e

No “attendawnce hacking”!
No more than 2 unexcused absences.

Rarely, | will award bonuses for exceptional work.

Questions?

Feedback

Anonymously or eponymously

Anonymous Feedback

CSCI 331 Introduction to Computer Security, Fall 2021 Home Lectures Assignments Handouts ~ Help Hours.)

Secti 225pm
in the Ward Lab (Thompson Bio, room 301)
Section 2 Wed 235—350pn
in the Ward Lab (Thompson Bio, room 301)

Required The Cuckoo's Egg Tracking a Spy Through the
Reading: Maze of Computer Espionage, by Cifford Stol
[ISBN: 141 16507787
and other readings posted on ths site.

Sytabus 0L sytabuspdf

Class Schedule 04-schedbeqds fversion: 9/6/2)
subject to 05.estimated.vork hours pdf fversion
revison] 9/s/2)

Your to-dos

1. Answer “Getting to Know You” survey by
tomorrow.

2. Reading response (Stoll) due Wed.
I. LaTeX optional.
ii. Must be printed, put in my box.

3. Sign and return Code of Ethics by Wed.
1. Putin my box.

4. First lab on Wednesday.

R Do you know what section you are in?
==
Readings for Lab 0 Lab O

If you have a laptop that you plan to use for the

1. Lab 0 writeup. semester, please bring it to our first lab meeting.

Not a bad idea to skim labs ahead of time.

If you prefer to use a lab machine, you don’t need
to bring anything.

The C Programming Language

Activity: What do you know about C?

Let’s start with the easy stuff

$ gcc helloworld.c

Like Java, C programs need to be compiled
before you can run them.

The C compiler ignores many problems

$ gcc -Wall helloworld.c

So you should always ask it to report warnings.

If you don’t like a.out

$ gcc -Wall helloworld.c -o helloworld

Tell the compiler what you want the output
named.

1.

C Background

Despite its quirks, it has many of the features
that you know and love in Java/Python, etc.

(it looks sort of like Java!)

Often used in low-level or “systems”
programming.

Nearly as fast as expert assembly code; usually
faster than non-expert assembly.

No safety net. Very easy to write programs with
subtle bugs.

No garbage collector: no memory safety.
No bounds checker: off-by-one is subtle!
No objects: roll your own!!

No strings: null-terminated char arrays!!!
This list is not exhaustive!!!!

aRrwb=

The problem with C is not its complexity.

The problem is its simplicity.

Remember these rules and you’ll be OK!

Rule O:

Pointers are for pointing at other values in
memory.

#include <stdio.h>

int main()
int

int *x =& F
printf("num = %d, and it is stored at %p.\n",
return 0;

Rule 1:

Whenever you store a variable, you always ask
C to reserve memory for some duration.

#include <stdio.h>
#include <stdlib.h>

#include <stdio.h> int main() {

Activity: What effect do these
programs have on memory?

int * = malloc(sizeof(int));
int main() { if (!

int = 331; printf("Unable to allocate.\n");
printf("%d rocks!\n",)E exit(1);
return 0; }

* = 331;

printf("%d rocks!\n", x

return 0;

¥
short (automatic) long (allocated)
Rule 2:

All long duration storage needs to be both
allocated and deallocated.

What’s wrong with this program?

#include <stdio.h>
#include <stdlib.h>

int main() {
int * = malloc(sizeof(int));
if (!) {
printf("Unable to allocate.\n");
exit(1);

* = 331;
printf("%d rocks!\n", x
return 0;

free(num_ptr);

(does this bug actually matter for this program?)

You cannot understand a C program if you
don’t know rules 0, 1, and 2.

Recap & Next Class

Today we learned:

More course mechanics
Feedback
Some C

Next class:

Cuckoo’s Egg discussion
More C

