Announcements

* No CS Colloquium this week

CSCI 331: _ _
Introduction to Computer Security * Instead, intro Women in CS event,
Friday 2:35-4pm @ Eco Cafe
Lecture 3: More C (WITH SNACKS!!!)

- Lab 1/RR2 will be posted tonight.

Instructor: Dan Barowy
Williams

Topics
Office hours today: 4-6pm in TBL 301
The Cuckoo’s Egg discussion

Using a LaTeX template
More C

© N

Your to-dos

Lab 1 out.

i. Note that it includes some reading.
ii. Lab 1 due Sunday 9/26 by 11:59pm.
iii. Be sure to get your RPi setup soon.

Reading response 2 (Schneier) due Wed, 9/22.

Keep on reading The Cuckoo’s Egg.

Reading discussion

MAP or e INTERNET

THE IPY4 SPACE, 2006

THIS CHART SHOWS THE 1P ADDRESS SPACE ON A PLANE USING A FRACTAL MWPPING
WHICH PRESERVES GROUPING -- ANY CONSECUTIVE STRING OF [Ps. WILL TRANSLATE TO
A SINGLE COMPACT, CONTIGUOUS REGION ON THE MAR EACH OF THE 256 NUMBERED
BLOCKS REPRESENTS ONE /8 SUBNET (CoNTAINING AL |Ps THAT START WITH THAT NUWEER).

“THE UPPER LEFT SELTION SHOWS THE BLOCKS SOLD DIRECTLY TO CORPORATIONS AND
GOVERNMENTS N THE 19905 BEFORE THE RIRs Took OVER ALLOCATION.
O 1 14 156 19

3203 27 18
Y78 u ' WAH.D&ATED
56 9 10

C rules from last class

0. Pointers are for pointing at other values in
memory.

1. Whenever you store a variable, you always ask C
to reserve memory for some duration.

Activity: What effect do these
programs have on memory?

#include <stdio.h>
#include <stdlib.h>

#include <stdio.h>

int main() {

int * = malloc(sizeof(int));
int main() { if (!

int = 331;

printf("Unable to allocate.\n");
printf("%sd rocks!\n",); exit(1);

return 0; }

* = 331;

printf("%sd rocks!\n", x

return 0;

Rule 2:

All long duration storage needs to be both
allocated and deallocated.

Last class we spotted what was wrong here...

#include <stdio.h>
#include <stdlib.h>

int main() {
int * = malloc(sizeof(int));
if (!
printf("Unable to allocate.\n");
exit(1);

* = 3J3ilF
printf("%d rocks!\n", x
return 0;

b

free(num_ptr);

Does this bug “matter” for this program?

Rule 3:
Always initialize variables.
What does this program print?

#include <stdio.h>

int main() {
int

printf("sd rocks!\n",);
return 0;

S

(always? are you sure?)

This program prints “331 rocks!”

#include <stdio.h>

int foo() {
int = 331;
return aj;

+

int bar() {
int b;
return b;

int main() {
fool();
int = bar();
printf("%sd rocks!\n",
return 0;

}

Rule 4:

Watch out for off-by-one errors.

#include <stdio.h>

int main() {
int

[0]

[1]

[2]

[3]

[4]

(6]

APWNRPRSO—

int /H
for (int = 0; <= 5; i++) {
) += [il;

printf("sum: %d\n",

return 0;

Effects range from subtle to catastrophic!

Rule 5:

Always null-terminate “C strings.”

C has no string data type.
Instead, it has character arrays.
Character arrays must always be null-terminated.

(otherwise bad things happen)

C Strings

What is the type of s? What does s store? How do | know that s points to an array?
Where in memory does the data “horcrux\0” live?

char *
h o r c r u x | \O
0 1 2 3 4 5 6 7
#include <stdio.h>
s’/ int baz () {
baz char *s = "horcrux";

printf ("%s\n", s);
return O;

}

Call stack
String: just a null-terminated array of chars.
There is no string type in C.

C Memory

char *
h o r c r u x | \O
0 1 2 3 4 5 6 7
#include <stdio.h>
#include <stdlib.h>
s’/ #include <string.h>
bar

int bar() {
char *s;
s = malloc(8);

strncpy (s, "horcrux", 7);
printf ("%s\n", s);
return 0;

Call stack

What happens to s when bar returns?
What happens to the thing s pointed to?

C Memory

char *

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int bar() {
char *s;
s = malloc(8);

strncpy (s, "horcrux", 7);

Call stack printf("%$s\n", s);
return O;

}
Answer: nothing. Memory leak!

C Rules

0. Pointers are for pointing at other values in
memory.

1. Remember, when using a variable, you’re always
ask C to reserve memory for some duration.

2. Always allocate and deallocate long duration
storage.

3. Always initialize variables.

4. Watch out for off-by-one errors.

5. Always null-terminate “C strings.”

Recap & Next Class

Today we discussed:

The Cuckoo’s Egg
More C

Next class:
Virtual memory

Segmentation Faults
Pseudoterminals

