CSCI 331:
Introduction to Computer Security

Lecture 10: Anatomy of a bug

Instructor: Dan Barowy

Williams

Announcements

- TA applications open tomorrow; due by Oct 29.
- TAfeedback survey Oct 17.

Next lab: meet in lobby of Jesup. Do not be
late! We will leave promptly at the start of lab.

Topics

Rainbow Table Generation
Rainbow Table Lookup
A Sample Exploit

Your to-dos

1. Start studying for midterm.
2. Lab 3 part 2, due Sunday 10/17.
3. Project part 2, out soon.

Class activity:
How | think about rainbow lookups

generating rainbow chains

of length 3

Hash function lookup table:
hex plaintext
plaintext Hash of plantext o v First three rainbow chains
vovy 4A7D1ED414474E4033AC29CCB8653D9B 7 -
vovk 25BBDCD06C32D477F7FA1C3E4A91B032) kv
wwkv FC1198178C3504BFDDAICAZ996EBE5CE . s h ro h 2 r h 9 r2
—— 4A7D —> e — — 7F97 —>

wwkk AE2BAC2E4BADASOSDO1B2952D7E3SBA4 e | vxwr | yove 4A7D iy DB2F * ¥k F * VYK

vkvy
vkvy DB2F40F24260BC41DB48DB2DSE7ABF1D
vkvk 814F06AB7F40B2CFF77F2C7BDFFD3415 s L h fo h r h r2

func reducer(c,i): 6 vhkv "'*_’ 25BB — VV*V — FCll — **" — 1E6E —> '**'
vkkv 2AB6ACBC1C39026B5D70457BB71B1428
Convert the ith hexadecimal 7 vk k
vhkkk 7D7C FOD845FC75679A41 digit of c into a plaintext h ro h r h rz
ing the following table:
*vve A9B7BA70783B617E9998DCADDB2EBICS using the Totlontng tavte 8 foldd YVk ¥—> FC11l —>k hk dk—>B59C—> ¥ A ¥k —> 8L4F —> Yk V¥
*vvk B8C37E33DEFDES!1CF91E1E03E51657DA ° P
*vkv 1E48C4420B7073BC11916C6C1DE226BB A vk
*vkk 7F975A56C761DBES0BECAOB37CEGECE? B kvkk end start
*k¥v 1EGE0A04D20F50967C64DAC2DE39A577 c *kvy
*kvk COBFF625BDB0393992CODADBOCEBBE4S D kkvk 042 .4 4444
*kky 2CBCA44843A864533EC05B321AE1FID1 E ok kv Yh AV YV
*kkk B59C67BF196A4758191E42F76670CEBA B okkk
VAVY | VOV
Find the first three rainbow chains of length 3.

Rainbow table (for first 3 chains)

end | start

*vvk | vvvw
Yk AV YoV
vAVY [YUk
Decrypt FC11.
Hypothesis: FC11 is the third link in the chain.
FC11—2» wwwk IS vwwx an end? No.
Hypothesis: FC11 is the second link in the chain.

ri h ra
FCll—> %% vYy —> IE6E— ¥% % ¥ |S ¥ %¥ an end? Yes.

e plaintext
e
FC11

Decrypt from start vwwsx:

h ro
VYVV¥k —> 25BB—> YV % ¥

Countermeasures Against Cracking Attacks

Password salts.
Uniformly-distributed passwords.
Two-factor authentication.
Last-known IP address.

Make hashing expensive.

Key Stretching

Key stretching is a technique used to make password
decryption attacks computationally expensive. Unlike an
ordinary user, an attacker must invoke a hash function many
times. Key stretching amplifies the cost of a hash
function using a stretch factor s.

f5(p) = csis an iterated hash function, where

fi(p) =f(p) = ¢!
f2(p) = f(f(p)) = 2
£3(p) = f(f(f(p))) = ¢

fo(p) =cn

Key Stretching

There are many publicly-available key stretching
implementations. Two commonly-used implementations:

* berypt (default hash function in OpenBSD)
+ PBKDF2 (part of the RSA encryption standard)

Both are interesting in that the stretch factor can be tied to
available computational power.

LastPasse«s|

We're also taking this as an opportunity to roll out something we've been planning for a while: PBKDF2 using SHA-256 on the server with a
256-bit salt utilizing 100,000 rounds. We'll be rolling out a second implementation of it with the client too. In more basic terms, this further
mitigates the risk if we ever see something suspicious like this in the future. As we continue to grow we'll continue to find ways to reduce
how large a target we are.

Bugs

D5th ANNIVERSARY EDITION
29 s

MATTHEW DABNEY JOHN ALLY
BRODERICK . COLEMAN WOOD - SHEEDY

Isitagame, orisitreal?

[T\

Anatomy of a bug

We can use the GCC assembler to figure out what’s going

on.

Note that | use a large number of GCC flags here. Don't let
them scare you. These flags essentially reduce the program
to its simplest form in assembly.

*-S : output assembly

*-c : compile as library (no C startup routines)

+ -fno-dwarf2-cfi-asm : no control flow integrity

+ -fno-asynchronous-unwind-tables : no exception support
+ -fno-exceptions : exception support

- -z execstack : allow executable stacks

- -fno-stack-protector : disable stack canaries

Recap & Next Class

Today we learned:

Rainbow table generation
Rainbow table lookup
Sample buffer overflow exploit

Next class:

How to craft an exploit

