Announcements

CSCI 331: * Friday’s colloquium: grad school panel

Introduction to Computer Security (featuring Williams alums!)
e Lab 7: you will have the opportunity to refine

your Lab 5 submission when you turn in

Lab 7.

* To qualify, you must have turned in lab 5
by the due date (or taken late days to
extend the due date).

Lecture 16: Removing NULL bytes

Instructor: Dan Barowy
Williams

Topics Your to-dos

Writing assembly programs 1. Reading response (Wang), due Wed 11/10.
_ 2. Lab 7, due Sunday 11/21.
Removing NULL bytes 3. Project part 2, due Sunday 11/14.




Assembly programming

As usual, let’s start with “Hello world!”

#include <stdio.h>

int main () {
printf ("Hello world!\n");
return 0;

1
2
3
4

oy Ul

How do we write the equivalent in assembly?

Let’s use a C program as inspiration.

Assembly programming

$ gcc -S helloworld.c

frame
_anonym

h armvé

main EEEEk!
tax uni

What'’s really necessary?

Let’s find the essentials

Much better

world!\000"

{fp, 1lr}

Can we make this shorter?

Can we remove ? Not directly.




Can you spot the problem?

mp -d shorter.o

file format elf32-littlearm

; 29 <main+0Oxlc>

ARM instructions must be 4-byte aligned.

A nice, short program

.global main
main:

push {fp, 1lr}
add fp, sp, #4
adr r0, hello

bl puts
mov r0, #0
pop {fp, pc}
hello:
.ascii "Hello world!\000"

Now suppose we want to turn this into shellcode...

Recall how this works

buf — -

eor r2, r2
adr rl, shell

push {rl1l, fp, 1lr}

pop {r0, fp, 1lr}
strb r2, [rl, #7]

push {rl, fp, 1r}
add fp, sp, #4
mov r7, #11

. old fp
vuln_function (addr of buf) —

main

Shellcode is written independently of the target.

Can’t refer to all symbol names in target

.global main
main:

push {fp, 1lr}
add fp, sp, #4
adr r0, hello
bl puts

mov r3, #0
mov r0, r3
pop {fp, pc}
hello:
.ascii "Hello world!\000"

Symbol in target need to be translated into addrs




Pointers are supported in hardware! Suppose puts is 0x102e4 in target

.global main
main:

push {fp, 1lr}

add fp, sp, #4
adr r0, hello
adr r2, putsaddr
ldr rl, [r2]

blx rl

mov r0, #0

dereference x *x adr ro, X 10 pop (fp, pc}
11 putsaddr:

ldr r7, [ro6] 12 .word 0x000102e4
13 hello:
14 .ascii "Hello world!\000"

Meaning C ARM

address of x &x adr r7, x

1
2
3
4
5
6
7
8

o)

(variable names and register numbers chosen arbitrarily)
Better. But we have one more problem...

NULL bytes NULL bytes

$ objdump -d shelly.o $ objdump -d shelly.o

shelly.o: file format elf32-littlearm shelly.o: file format elf32-littlearm

Can you spot them? Most C string handling functions will stop copying.




NULL bytes

$ objdump -d shelly.o

shelly.o: file format elf32-littlearm

We need to be creative to remove these.

Experiment using tiny examples

Experiment using tiny examples

experimentl.s experiment2.s
push {fp, 1r} push {rl, fp, 1lr}
$ gcc -c experimentl.s $ gcc -c experiment2.s
$ objdump -d experimentl.o $ objdump -d experiment2.o
Disassembly of section .text: Disassembly of section .text:
00000000 <.text>: 00000000 <.text>:
0:e92d4800 push {fp, 1lr} 0:e92d4802 push {rl, fp, 1lr}

If you do this, don’t forget that you have more to pop later.

Some tips

Use disas <£fnname> to find function in GDB
(note: program must be loaded)

Be careful where you put your stack!

Use .word for 4-byte constants

Use .ascii for NULL-free string literals

Use adr to load the “address of” a value

Use 1dr to “dereference” a value

Use blx to branch to a register

(make sure MSB is zero!)

eor a register to itself to generate zero values
at runtime.

Write self-modifying code!




Lab 7 Overview

Recap & Next Class

Today we learned:
NULL byte removal

Next class:

Undefined behavior
Lab 5 Q&A




