__ 3]
Assembly-Level Debugging with gdb

The GNU Debugger (gdb) is an incredibly useful tool for debugging C programs. It lets you step through a program one
program statement at a time, inspect local variables, set breakpoints, and so forth. But gdb is also a big time-saver when
working with assembly code. Spending a little time getting to know gdb will take all the guesswork out of developing an
exploit for a vulnerable program.

Disassembly mode

When you start gdb with a program, e.g.,

$ gdbtui myprogram

you can switch it into “disassembly mode.”

(gdb) layout asm

Your source code window in gdb will now be filled with assembly code.

Debug symbols

This note is primarily for people who already have a little experience using gdb.

gcc lets you add what are called “debug symbols” for debugging a program. These symbols are handy
when debugging C code, but not all that useful when debugging at the assembly level. If you've used gdb
before, you may be in the habit of using this flag.

Try generating the assembly for a program with gcc -S and then generating assembly for the same program
with debug symbols using gcc -g -S.

For a simple “hello world” program, I get 34 lines of assembly using the first option and 220 (!!!) lines of
assembly for the second version. What's going on? In short, gcc generates lots of supporting information to
help gdb doitsjob. This is very useful when debugging C code, and all of this extra information is hidden from
you at the source code level. But when debugging at the assembly level, it adds a lot of unnecessary noise.

I suggest that you do not use the -g flag when generating assembly code for this class.

86

Running programs

Running a program in gdb is easy. At the (gdb) prompt, type:
(gdb) run

Note that, although you can run programs this way, this method may not be all that useful for Lab 5. Instead,
you probably want to run a program with some input from STDIN. You will also want to know how to pause
a program at a given point, which is called setting a breakpoint.

Running programs that read from STDIN

Using gdb with programs that read from STDIN is a little tricky because the gdb does not attach the program’s
STDIN to your terminal’s STDOUT. gdb is using your STDOUT to control gdb itself. Fortunately, if you save your
desired input into a file, you can ask gdb to pass that input along to the program:

(gdb) run < myfile

Setting assembly breakpoints

It is often very useful to pause the execution of a running program so that you can inspect its state (local
variables, call stack, etc.). A breakpoint is a location at which you ask gdb to pause. In gdb, you can set break-
points at both the source code (e.g., C) level or at the assembly level. We will primarily want to set assembly
breakpoints in this class.

Setting an assembly breakpoint is done by using the address of the instruction that you want gdb to “break”
at. E.g.,
(gdb) break *0x80483d4

You can also type the shorthand:
(gdb) b *0x80483d4

If you're using gdbtui, you should see a b+ appear in the assembly listing at the location you requested.

The * in the command above is mandatory; it tells gdb to interpret the argument to break as an address and
not as a label (which is the default).

Note that if you supply a label (e.g., a function name), the breakpoint will appear after the function’s pro-
logue. This may not be what you want! E.g., suppose I have the function:

0x80483d4 <main> push {fp, 1r}
0x80483d8 <main+4> add fp, sp, #4
0x80483dc <main+8> mov rl, #2

and I call break main. Then the breakpoint will be set at main+8, at address 0x80483dc.

ASSEMBLY-LEVEL DEBUGGING WITH GDB 87

Inspecting registers

You can look at the state of all of your registers using:

(gdb) info registers

You can also inspect a single register by giving the above command the name of a register:

(gdb) info registers r0

Stepping, stepping over, and continuing

As when debugging C code in gdb, you can step to the next instruction when in assembly mode. Note that
the ordinary step command steps to the next C statement. A single C statement can correspond with many
assembly instructions. Instead, to step at the assembly level, use

(gdb) stepi

which steps to the next assembly instruction. Alternatively, you can also use the shortcut,
(gdb) si

It’s also worth noting that pressing will repeat the last command you ran.

You can also “step over” branch instructions (like bl) just like you might step over functions (using next)
with:

(gdb) nexti

or the shorthand

(gdb) nexti
Finally, if you've set an assembly breakpoint, and you want to continue until your breakpoint is hit, use:
(gdb) continue

or the shorthand

(gdb) ¢

Printing values

You can print the values of registers and memory locations. This is very useful in combination with gdb’s
formatting options.

For example, you can print the register sp like so:
(gdb) p $sp

Would you like to see the output in hexadecimal?
(gdb) p/x $sp

88

Why might this be preferable to info registers ssp? For starters, you can use it to print mathematical
expressions, like:

(gdb) p/x $sp - 32

In fact, if you know that a value is a pointer, you can tell gdb to “cast” the value, which is very useful for un-
derstanding what data exists at certain memory locations. For example, the following expression dereferences
(the first *) the int * (cast) stored at location $sp - 32.

(gdb) p *(int *) ($esp - 32)

Or maybe you want to see that in hexadecimal?

(gdb) (gdb) p/x *(int *) ($esp - 32)

Inspecting values

Perhaps you would like to inspect a word stored at a given location, but you'd like to view it one byte at a time,
in hex format? Suppose our word starts at Oxabcdef01:

(gdb) x/4xb OxabcdefO1

The x command asks to examine memory. The arguments to x are
after the / and are number, format, and unit. The above command exam-

ines “4 bytes, each printed in hexadecimal.”? 1 A complete reference for examining

memory can be found at https://web.
mit.edu/gnu/doc/html/gdb_10.html#
SEC58.

https://web.mit.edu/gnu/doc/html/gdb_10.html#SEC58
https://web.mit.edu/gnu/doc/html/gdb_10.html#SEC58
https://web.mit.edu/gnu/doc/html/gdb_10.html#SEC58

	Lab 0: Setting up your Raspberry Pi
	Learning Goals
	The Lab Kit
	Step 1: Flash Your SD Card
	Step 2: Connect a Serial Console Adapter to Your Computer
	Step 3: Start a Console Emulator on the Host Computer
	Step 4: Observe the Blinkenlights
	Step 5: Connect a Serial Console Adapter to the Raspberry Pi
	Step 6: Insert microSD Card and Power Up
	Step 7: Do a clean shutdown
	Step 8: Configure Console Dimensions
	Step 9: Configure Wifi
	Step 10: Install Some Software
	Step 11: Have a Little Fun: Network Scanning

	Lab 1: Login Security
	Learning Goals
	Required Reading
	Computing Environment
	Finding Documentation for C Functions
	Starter Code
	The Password Database
	Part 1: login0, a naïve login program
	Part 2: Attacking login0
	Part 3: login1, an improved login program
	Part 4: attack1, a brute force attack on login1
	Part 5: login2, an even-better login program
	Reflection Questions
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Pseudoterminals
	Terminals
	Pseudo Terminals
	How to Write a Control Program
	Development Tips

	Lab 2: Hashtables in C
	Learning Goals
	Requirements
	Inputs and Outputs
	Starter Code
	How to Start
	Gotchas

	Lab 3: Password Cracking
	Required Reading
	Requirements
	Inputs and Outputs
	Part 1: Dictionary Attack
	Part 2: Trading Time for Space
	Reflection Questions
	Bonus
	Development Tips
	Lab Deliverables
	Submitting Your Lab
	Bonus: Feedback
	Bonus: Mistakes

	Lab 4: The A32 Calling Convention
	Learning Goals
	Requirements
	Starter Code
	Compilation
	Part 1: What does each step do?
	Part 2: Simulate a program on paper
	Part 3: Did you get it right?
	Part 4: Where are the following sections?
	Part 5: Modify the program

	Lab 5: Stack Smashing, Part 1
	Learning Goals
	Required Reading
	Requirements
	Application code
	Environment set-up
	Step 1: Find the vulnerability
	Step 2: Jump to a different function
	Step 3: Filling a buffer with shellcode and executing it

	Assembly-Level Debugging with gdb
	Disassembly mode
	Running programs
	Running programs that read from STDIN
	Setting assembly breakpoints
	Inspecting registers
	Stepping, stepping over, and continuing
	Printing values
	Inspecting values

	Appendix A: ARM Reference
	Register Mnemonics for A32 Calling Convention
	Status Flags
	A32 Calling Convention
	Instruction Mnemonics

	Appendix A: Instructor Notes
	To modify a Raspbian binary image
	To enable serial console in Raspbian
	To configure wireless in Raspbian
	To change the size of a terminal display

	Index

